ABORDAGEM DA REAÇÃO DO CRESCIMENTO DE GOIABEIRAS INFECTADAS POR Meloidogyne enterolobii

Séphora Neves da Silva¹, Inorbert de Melo Lima², Gustavo Alvarez Santos¹, Matheus Alves Silva¹, Adésio Ferreira¹, Marcia Flores da Silva Ferreira¹

¹Universidade Federal do Espírito Santo – Centro de Ciências Agrárias/Departamento de Produção Vegetal, Alto Universitário S/N – CX Postal 16, CEP: 29.500.000 – Alegre – ES, Brasil, <u>sephorans@gmail.com</u>, <u>gustavoccaufes@gmail.com</u>, <u>alvesmatheuss21@gmail.com</u>, <u>adesioferreira@gmail.com</u>, <u>mfloressf@gmail.com</u>

²Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER), Rodovia BR 101 Norte – Km 151 – CX Postal 62, CEP: 29900-970 – Linhares – ES, Brasil, inorbert@incaper.es.gov.br

Resumo- A meloidoginose da goiabeira, causada por *Meloidogyne enterolobii*, é atualmente o principal problema fitossanitário da cultura, podendo causar queda de produtividade e morte das plantas. Assim, o objetivo deste trabalho foi verificar o comportamento do crescimento das mudas de goiabeiras infectadas com *Meloidogyne enterolobii* sob diferentes análises de dados. Plantas de 28 genótipos espontâneos de goiabeiras foram inoculadas com 5 mL de suspensão, contendo 1000 ovos e juvenis de segundo estádio (J2) por mL, 155 dias após serem semeadas. Transcorridos 180 dias após serem inoculadas, foram avaliados o comprimento da raiz e da parte aérea das mesmas. O experimento foi organizado em delineamento inteiramente casualisado (DIC) com quatro repetições. Os genótipos apresentaram aproximadamente 41 cm de comprimento de raiz e 45 cm de parte aérea. Também foi observada uma correlação negativa para o comprimento da raiz e da parte aérea com o grau de infecção. *M. enterolobii* influência no crescimento de mudas de goiabeira e as diferentes análises dos dados utilizadas são eficientes para verificar da influência.

Palavras-chave: Psidium guajava L., nematoide de galha, avaliação.

Área do Conhecimento: Engenharia Agronômica

Introdução

A goiabeira, *Psidium guajava* L., produz fruto que é uma excelente fonte de vitaminas A, B e C, cálcio, zinco, fósforo e ferro (SINGH, 2005). Além disso, os frutos, folhas, flores, caule, raízes e casca são usados medicinalmente (GUTIERREZ, 2008; KAMATH et al., 2008). Essas características unidas aos baixos custos de cultivo apresentam grande importância econômica em várias regiões de países tropicais e subtropicais do mundo (RODRIGUEZ et al., 2010).

O Brasil é um dos maiores produtores de goiaba do mundo (FAO, 2011), porém quando a planta encontra-se com a meloidoginose da goiabeira, causada por *Meloidogyne enterolobii*, popularmente denominado nematoide-das-galhas da goiabeira (NGG), principal problema fitossanitário desta cultura, a produção cai chegando a ocorrer morte das plantas em muitas vezes (CARNEIRO et al. 2007; ALMEIDA et al. 2009; MARQUES et al., 2012).

O *Meloidogyne enterolobii* ataca o sistema radicular, desde as radicelas superficiais até a raiz pivotante mais lignificada, localizada a mais de 50

cm de profundidade (REIS et al., 2011) e apresenta altas taxas de multiplicação patogenicidade à diferentes espécies como: alface, pepino, tomate, pimentão, soja e fumo (ALMEIDA et al., 2008). Prejuízos relacionados à meloidoginose na goiabeira são variáveis, constatando-se perdas de até 100% da produção. Na região de Petrolina (PE), em função do ataque destes nematoides, ocorreu redução de área plantada de 6.000 ha para 2.500 ha, reduzindo em mais de 50% a produção de goiaba (CARNEIRO et al., 2006). Na região de São João da Barra (RJ), as perdas econômicas motivaram a erradicação dos pomares e a mudança de atividade pelos produtores (LIMA et al., 2003). Assim, o objetivo deste trabalho foi verificar o comportamento do crescimento das mudas de goiabeiras infectadas com Meloidogyne enterolobii sob diferentes análises de dados.

Metodologia

Para verificação do desenvolvimento das mudas de genótipos de goiabeiras, foram utilizados sementes de 28 genótipos espontâneos de goiabeira coletados em diferentes estados brasileiros.

A semeadura foi feita em 21/11/2011 em sacolas de polietileno (17x15 cm) contendo substrato comercial para formação das mudas. Após 120 dias, as plantas foram transplantadas individualmente para vasos de 5 L contendo uma mistura (3:1) de solo e areia, isentos do patógeno. Trinta e cinco dias depois, as plantas foram inoculadas com 5 mL de suspensão, contendo 1000 ovos e juvenis de segundo estádio (J2) por mL. O inóculo foi aplicado em cinco locais ao redor do sistema radicular das plantas, constituindo a população inicial (Pi) de 5.000 ovos e J2 por planta. A população do nematoide foi confirmada como Meloidogyne enterolobii pela técnica de eletroforese de insoenzima esterase. O inóculo foi preparado com base na técnica de Hussey e Barker (1973), modificado por Boneti e Ferraz (1981), a partir de raízes naturalmente infectadas, coletadas em um pomar de goiabeira cv. "Paluma", localizado na Fazenda Experimental do Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural - INCAPER no distrito de Pacutuba, Município de Cachoeiro de Itapemirim -ES. Os vasos foram organizados em delineamento inteiramente casualizado (DIC) com quatro repetições. A cultivar Paluma foi utilizada como controle de sucetibilidade.

O experimento foi conduzido em casa de vegetação, na área experimental do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES), em Alegre- ES. A avaliação do crescimento das mudas foi realizada 180 dias após a inoculação. Foi avaliado o comprimento da raíz e da parte aérea, com auxílio de uma trena. Os dados foram submetidos à análise de suficiência amostral e teste de Shapiro Wilk para verificação da robustez e normalidade dos dados amostrados. Valores de probabilidade (p>0.05) foram transformados (In+1). Os dados transformados foram padronizados pela dispersão (standardize). Para verificar a estrutura dos dados foram realizadas análises descritivas. verificar a associação entre o nível de infecção e o comprimento das mudas foi realizado o índice correlação de Spearman, e a dispersão gráfica. Todas as análises foram efetuadas utilizando-se os recursos do aplicativo computacional em genética e estatística Multiv (PILAR, 2007) e pelo programa computacional R (TEAM, 2015).

Resultados

Os dados de crescimento das mudas de goiabeiras infectadas com *Meloidogyne enterolobii* e as análises encontram-se nas tabela 1 e nas figuras 1 a 4.

Tabela 1 - Análises descritivas das variáveis analisadas.

	CR (cm)	CPA (cm)	FR
Média	40,68	44,68	1,76
DP	6,33	6,49	0,86
VAR	40,02	42,17	0,74
Assimetria	-0,0800	1,5215	0,85
S.Wilk (p)	0,666	0,004	0,07
Transf. escalar	ln+1	-	ln+1

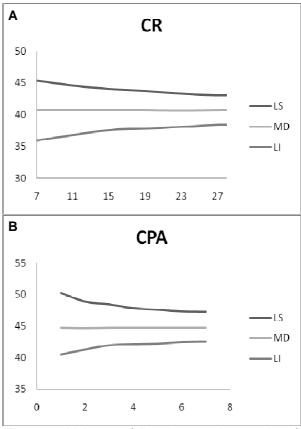
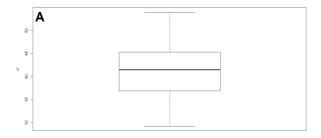



Figura 1 - Valores médios do comprimento da raíz (CR), na figura A e da parte aérea (CPA), figura B, obtidos por reamostragem (bootstrap) com reposição de um conjunto de dados com 28 unidades amostrais, para os dados dentro do limite superior (LS), e inferior (LI) e a média (MD).

A reamostragem de bootstrap foi feita com 1000 interações e com uma probabilidade de erro (α = 0.05), ela informou estimativas através de limites de confiança, que o limite inferior será na 25 \square posição e o limite superior será na 976 \square

posição. Assim, com intervalo de confiança de 95%, foram determinadas a média (Figura 1) para o comprimento de raiz e da parte aérea das plantas com os diferentes tamanhos de unidades amostrais (7, 11, 15, 19, 25, 27 e 28).

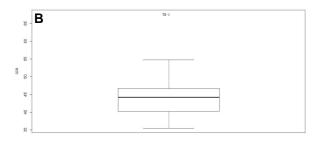


Figura 2 - Boxplot do comprimento da raíz (CR), na figura A e da parte aérea (CPA), figura B, dos genótipos de goiabeiras.

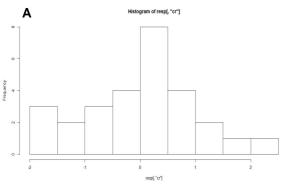


Figura 3 - Histograma do comprimento da raíz (CR), na figura A dos dados brutos (A) e padronizados na figura (B).

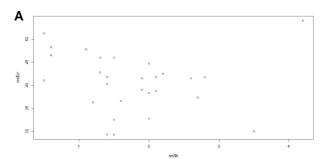



Figura 4 - Histograma do comprimento da parte aérea (CPA) dos dados brutos que apresentaram normais e não precisaram ser transformados.

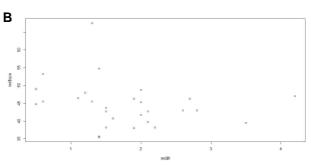


Figura 4 - Dispersão gráfica das do comprimento da raiz (CR), na figura A e da parte aérea (CPA), figura B, dos genótipos de goiabeiras.

A verificação da normalidade (Tabela 1) dos dados foi feita pelo teste de Shapiro Wilk. A variável comprimento de raiz, não apresentou normalidade (p < 0,05) sendo então transformada.

O melhor ajuste de transformação destas variáveis foi com (ln+1). Histograma (Figura 3) mostra a distribuição dos dados originais e transformados. Também foi feita a dispersão dos dados (Figura 4).

As Correlações de Spearman entre o fator de reprodução e o comprimento de raiz e de parte

aéra foram respectivamente (-0.2479) e (-0.3385), já a correlação entre o comprimento de raiz com a parte aérea foi positiva (0.3498).

Discussão

Para melhor observação e avaliação dos dados visando a detecção de erros na obtenção dos dados e/ou de valores atípicos e a visualização da estruturas dos dados, foram feitas as análises descritivas (Tabela 1). Em média, os genótipos apresentaram aproximadamente 41 cm de comprimento de raiz e 45 cm de parte aérea.

No boxplot (Figura 2) foi observado outliers para a variável comprimento da parte aérea (genótipo 10). Esses não foram removidos pois como se trata de um estudo de melhoramento, esses genótipos se mostraram superiores aos demais, devendo ser avaliados e reestudados. O boxplot é um gráfico utilizado para avaliar a distribuição empírica dos dados (CRUZ, 2011).

A análise da correlação entre as variáveis (Correlação Spearman - MODO R), feita com intuito de investigar a relação entre os descritores (variáveis). Observou-se uma correlação negativa para as variáveis: comprimento da raiz e da parte aérea com o fator de reprodução. Isso mostrou que a infecção por M.enterolobii interfere no crescimento e desenvolvimento das plantas. Na figura 4, também pode-se visualizar a interferência das variáveis analisada em função do fator de reprodução. Foi verificado um genótipo altamente infectado com o nematóide que apresentou um bom desenvolvimento comparado com os demais genótipos. Este genótipo deve ser mais estudado, já que a infecção pelo nematoide não alterou seu desenvolvimento, sendo um genótipo de interesse para o melhoramento da cultura da goiabeira.

Diante de todas as análises feitas neste trabalho, pode se verificar a influência de infecção de *M. enterolobii* no crescimento das mudas de goiabeiras. Neste sentido, essas análises foram eficientes, podendo ser consideradas como uma ferramenta adicional o estudo de avaliação de resistência genética em estudos de melhoramento.

Conclusão

As análises utilizadas são eficientes para verificar da influência da infecção de *M. enterolobii* no desenvolvimento de plantas de goiabeira.

M. enterolobii influência no crescimento de mudas de goiabeira e esta influência é variável diante da diversidade do material avaliado.

Agradecimentos

Agradecemos ao CNPq, FAPES e CAPES pelo auxílio financeiro.

Referências

- ALMEIDA, E. J.; SOARES, P. L. M.; SILVA,A. R.; SANTOS,J. M. Novos registros sobre Meloidogyne mayaguensis no Brasil e estudo morfológico comparativo com M. incognita. **Nematologia Brasileira**, v.32, p.236-24, 2008.
- ALMEIDA, E. J.; SANTOS, J. M.; MARTINS, A. B. G. Resistência de goiabeiras e araçazeiros a Meloidogyne mayaguensis. **Pesquisa Agropecuária Brasileira**, v.44, p.421-423, 2009.
- BONETTI, J. I.; FERRAZ, S. Modificação do método de Hussey e Barker para a extração de ovos de Meloidogyne exigua, em raízes de cafeeiro. **Fitopatologia Brasileira**, v. 6, n. 3, p. 553, 1981.
- CARNEIRO, R. M. D. G.; ALMEIDA, M. R. A.; BRAGA, A.R.S.; ALMEIDA, C.A.; GIORIA, R. Primeiro registro de Meloidogyne mayaguensis parasitando plantas de tomate e pimentão resistentes à meloidoginose no Estado de São Paulo. **Nematologia Brasileira**, v. 30, n. 1, p. 81-86, 2006.
- CARNEIRO, R.M.D.G.; CIROTTO, P.A.; SILVA, DB.; GOMES CARNEIRO, R. Resistance to Meloidogyne mayaguensis in Psidium spp. accessions and their grafting compatibility with P. guajava cv. Paluma. **Fitopatologia Brasileira**. v. 32, n. 4, p. 281-284. 2007.
- CRUZ, C. D.; FERREIRA, F. M.; PESSONI, L. A. Biometria aplicada ao estudo da diversidade genética. Visconde do Rio Branco: **Suprema**, 620P, 2011.
- FAO CCP, Food and Agriculture Organization of the United Nations – Committee on Commodity Problems, 2010. Tropical Fruits Compendium. Disponível em:
 http://www.fao.org/unfao/bodies/ccp/ccp66/Index _en.htm>. Acesso em: 22 ago. 2015.
- GUTIÉRREZ, R.M.; MITCHELL, S.; SOLIS, R.V.J. Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J.

Ethnopharmacol., Limerick, v. 17, no. 1, p. 1-27, Apr. 2008.

- HUSSEY, R.S. e BARKER K.R. A comparison of methods of collecting of Meloidogyne spp. including a new technique. **Plant Disease Reporter**, v. 57, n. 12, p. 1025-1028,1973.
- KAMATH, J.V.; N. RAHUL; C.K. ASHOK KUMAR; S.M. LAKSHMI. *Psidium guajava*: A review. **Int. J. Green Pharm**., 2: 9-12, 2008.
- LIMA, I.M.; DOLINSKI, C.M.; SOUZA, R.M. Dispersão de Meloidogyne mayaguensis em goiabais de São João da Barra (RJ) e relato de novos hospedeiros dentre plantas invasoras e cultivadas. **Nematologia Brasileira**, v. 27, p. 257-258, 2003.
- MARQUES, M.L.S,; PIMENTEL,J.P; TAVARES O. C. H.; VEIGA C. F. M.; BERBARA R. L. L.. Hospedabilidade de diferentes espécies de plantas a *Meloidogyne enterolobii* no Estado do Rio de Janeiro. Nematropica 42:304-313, 2012.
- PILLAR, V.D. MULTIV, software para análise multivariada, testes de hipóteses e autoreamostragens. 2007. Porto Alegre, Departamento de Ecologia, UFRGS (versions 2.5b for Machintosh and Windows available at: 2007. Disponível em: http://ecoqua.ecologia.ufrgs.br. Acesso em 22 ago. 2015.
- TEAM, R. C. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2015. Disponível em: http://www.R-project.org/. Acesso em: 22 ago 2015.
- REIS, H.F.; BACCHI, L.M.A.; VIEIRA, C.R.Y.I. e SILVA, V.S. Ocorrência de Meloidogyne enterolobii (Sin. M. mayaguensis) em pomares de goiabeira no município de Ivinhema, MS. **Revista Brasileira de Fruticultura**, v.33, n.2, p. 676-679, 2011.
- RODRÍGUEZ, N.N; JULIETTE VALDÉS, J.; RODRÍGUEZ, J.A; VELÁSQUEZ, J.B; RIVERO, D.; MARTINEZ, F.; GONZALÉZ, G.; SOURD, D.G; GONZALÉZ, L.; CAÑIZARES, J. Genetic resources and breeding of guava (*Psidium guajava* L.) in Cuba. **Biotecnología Aplicada**, vol. 27, n.3, p. 238-241, 2010.

- SINGH, G. High density planting in guavaapplication of canopy architecture. **ICAR News** (April-June), 11(2): 9-10, 2005.