Vinculada à Secretaria de Estado da Agricultura

Nº 19

Agosto/83

p. 1/5

COMUNICADO TÉCNICO

FIXAÇÃO SIMBIÓTICA DO NITROGÊNIO NO FEIJOEIRO. IV INOCULAÇÃO COM Rhizobium phaseoli NA CULTIVAR RIO TIBAGI NO ESPÍRITO SANTO

Alvaro Augusto Teixeira Vargas¹ José Sebastião Machado Silveira² Braz Eduardo Vieira Pacova³ Alvaro Figueredo dos Santos⁴

Através de trabalhos realizados pela EMCAPA, tem sido confirmada a viabilidade de utilização do potencial de fixação simbiótica do N_2 , como alternativa para a fertilização nitrogenada do feijoeiro no Espírito Santo (1).

Entretanto, embora já existam cultivares de feijão com alta eficiência simbiótica para fixar o N_2 quando inoculadas com *Rhizobium phaseoli*, a utiliza ção das mesmas sem a adubação nitrogenada poderia ser difícil, já que nem sempre são encontradas respostas à inoculação nesta cultura.

Observações de campo, em mais de 100 propriedades rurais, nas principais zonas de cultivo de feijão do Estado, demonstraram que, em 95% dos locais escolhidos para amostragem, as raízes do feijoeiro apresentavam nodulação, evidenciando a presença de estirpes nativas de R. phaseoli nestes solos.

Entretanto, de uma maneira geral, as plantas apresentaram sintomas de deficiência de nitrogênio, além de outros elementos, quando o solo cultivado não havia sido adubado. Desta forma, o potencial simbiótico do *Rhizobium phaseoli* nativo no solo, possivelmente, estava comprometido pela baixa fertilidade dos solos.

Com este trabalho, objetivou-se estudar o efeito de uma mistura de cinco estirpes de R. phaseolí, bem como da fertilização mineral de fosforo, potássio

¹Pesquisador - EMCAPA

²Pesquisador, MS - EMCAPA

³Pesquisador, MS - EMBRAPA/EMCAPA

^{*}Pesquisador, MS - EMBRAPA/CEPEC/CEPLAC. Ex-Pesquisador EMCAPA

e micronutrientes na simbiose da cultivar Rio Tibagi com o Rhizobium phaseoli.

Os experimentos foram conduzidos nos municípios de Domingos Martins e Linhares, ES. A análise química dos solos revelou os seguintes valores: pH = 5,2; $A\ell^{+++} = 0,1$ me/100 g; $Ca^{++} + Mg^{++} = 3,9$ me/100 g; P = 5 ppm; P = 5 pp

Os 4 tratamentos utilizados foram: Testemunha; Adubação básica (P + K + Micronutrientes); Adubação básica + Inoculação com R. phaseuli e Adubação básica + 100 kg/ha de N-mineral (sulfato de amônio). As doses dos fertilizantes, em kg/ha foram: 200 de P_2O_5 , 60 de K_2 , 1 de molibdato de sódio, 4 de bórax, 7 de sulfato de zinco e 7 de sulfato de cobre. As 5 estirpes de R. phaseoli utilizadas, provenientes de outros Centros de Pesquisa, foram catalogadas na EMCAPA como ES 28, 59, 77, 78 e 79. Foi usada uma mistura destas estirpes na dose de 40g de inoculantes/kg de sementes, misturando-se o inoculante às sementes poucas ho ras antes do plantio. A cultivar escolhida para este trabalho foi a Rio Tibagi, tanto por estar indicada para o Estado(5), como pela eficiente fixação simbió tica que apresentou em trabalhos anteriores (1, 2, 3 e 4).

As avaliações de nodulação (peso e número de nódulos/planta) foram realizadas durante o ciclo da cultura, utilizando-se 20 plantas por parcela.

Pela tabela I pode ser observado que as médias dos parâmetros avaliados no Experimento I apresentaram um aumento acentuado entre a Testemunha e os tratamentos estudados. A inoculação com R. phaseolá aumentou o peso seco dos nódulos , mas não diferiu significativamente do tratamento sem inoculação + adubação básica no peso seco da parte acrea da planta e no rendimento de grãos.

A inoculação não conseguiu proporcionar o mesmo rendimento de grãos que a aplicação com N-mineral, que foi de 1462.5 kg/ha. Esto sugere que, embora tenha ocorrido um efeito benefico da inoculação na formação dos nódulos, a qualidade do inoculante deve ser melhorada, talvez com a utilização de estirpes de R. phaseoli com maior eficiência simbiótica na fixação do N_2 .

Houve um aumento na fixação simbiótica do nitrogênio, no Experimento 1, apenas com a utilização da fertilização básica, sem nitrogênio mineral, e sem inoculação. O peso seco da parte aérea, o peso seco dos nódulos e os rendimentos de grãos apresentaram, respectivamente, 1,75 g/planta,38,72mg/planta e 1078,4kg/ha, praticamente o dobro dos valores encontrados para a Testemunha sem inoculação e

TABELA 1 - Médias do peso seco da parte aérea das plantas, do peso seco dos nódulos, do número de nódulos e do rendimento de grãos, da cultivar de feijão Rio Tibagi, submetida a quatro fontes de nitrogênio. Espírito Santo, 1981/82.

	Exp. 1 -	Exp. 1 - MENDES DA FONSECA	DNSECA	Exp. 11	Exp. 11 - MENDES DA FONSECA	FONSECA			Exp.	F I III I I I I	
FONTES	Peso seco da parte	de parte Peso seco de parte Peso seco aérea da dos rodu. Rendimento	Rendimento	Peso seco Peso seco Peso seco da parte dos nódu dos nódu aérea los	Peso seco Peso seco Peso seco da parte dos nódu dos nódu aérea los	Peso seco dos nódu los	Rendimento	Peso seco da parte aérea	Peso seco Número de Peso seco da parte nódulos/ dos nódu aérea planta los	vúmero de Peso seco nodulos/ dos nodu planta los	Rendimento
NITROGENIO	planta g/pt L/	10s - mg/pl 2/	de graos kg/ha	9/66 3/	/F 74/6m	12 Jq/gm	planta 10s de grãos g/pl 3/ mg/pl 4/ mg/pl 5/ kg/ha g/pl 6/ 2/ mg/pl 8/ kg/ha	19 pd/6	17/	Mg/pl 8/	kg/ha
Testemunha	0,96 c	18,37 c	512,0 c	1,39 c	17,82 €	3,18 b	0,96 c 18,37 c 512,0 c 1,39 c 17,82 c 3,18 b 272,1 d 2,85 c 6,4 bc 9,8 b 314,6 c	2,85	6,4 bc	9,8	314,6 0
Adubação básica (P205 + K20 + Mi cronutrientes)	1,75 b	,75 b 38,72 b 1078,4 b	1078,4 b	3,48 b	3,48 b 45,19a		6,92 b 652,2 c	3,76 b	3,76 b 8,0 b	30,4a	507,3 b
Adubação básica + Inoculação com R. phaseoli	2,00 b	59,19a	1181,8 b	5,20a	5,20a 42,31a	24,35a	895,6 b	3,46 bc	3,46 bc 13,6a	28,7a	495,4 b
Adubação básica + 100 kg/ha de N-mineral	3,19a	43,92ab	43,92ab 1462,5a	5,43e	35,13 b	35,13 b 20,30a 1211,3a	1211,3a	5,01a	3,7 c	5,01a 3,7 c 7,8 b 894,5a	894,58
(\$) ^2	24,7	42,31	22,3	30,8	18,3	83,9	30,8	20,1	20,1 40,7	50,2	31,6

1/, 2/, 3/, 4/, 5/, 6/, 2/ e 8/ = 50, 33, 50, 27, 53, 40, 20 e 40 dias após o plantio, respectivamente. As médias foram calculadas a partir 8 repecições. As épocas de semeadura foram: 28/10/81 (Experimento I); 05/03/82 (Experimento II), e 16/04/82 (Experimento III). sem a fertilização básica. A presença dos rhizobía nativos nestes solos possibilitou o estabelecimento dos nódulos nas raízes do feijão e a fertilização mineral incrementou a fixação simbiótica entre o feijoeiro e estes rhizobía nativos.

Para o Experimento II, condições climáticas desfavoráveis provocaram uma diminuição no rendimento de grãos em todos os tratamentos estudados. Houve efeito da inoculação sobre o peso seco da parte aérea, o peso seco dos nódulos e o rendimento de grãos. Também, neste experimento, embora tenha sido constatado o efeito benéfico da inoculação, foi a fertilização com nitrogênio mineral que apresentou os mais altos valores tanto no peso seco da parte aérea da planta, como no rendimento de grãos.

A fertilização básica, utilizada isoladamente no Experimento II, aumentou a fixação simbiótica da cultivar Rio Tibagi com os rhizobía nativos existentes neste solo. Neste ensaio, embora tenha ocorrido um aumento do número de nódulos/planta com a inoculação, após os danos ocasionados pela chuva, uma avaliação posterior de peso seco dos nódulos indicou os mesmos valores entre os tratamentos com inoculação e sem inoculação, mas com adubação básica.

O rendimento de grãos mais elevado no Experimento III foi de 894,5 kg/ha, para os tratamentos com N-mineral, evidenciando a necessidade da fertilização mineral com este nutriente para se atingir os rendimentos mais elevados, o mesmo acontecendo com os Experimentos I e II.

Houve um efeito benéfico da inoculação, que sugere uma significativa economia em fertilizantes minerais nitrogenados, se os resultados forem extrapolados para grandes áreas de cultivo do feijoeiro. Entretanto, a qualidade do inoculan te deve ser melhorada, através da seleção de estirpes mais eficientes de Rhizo bium phaseoli, preferencialmente os rhizobia coletados nos solos do Estado.

LITERATURA CITADA

- 1 VARGAS, A.A.T.; SANTOS, A.F.; PACOVA, B.E.V. & SILVEIRA, J.S.M. <u>Fixação simbiótica do nitrogênio no feijoeiro</u>. III. Seleção de cultivares para alta eficiência na fixação do N2 e resistência à antracnose no Espírito Santo. Cariacica-ES, EMCAPA, 1983. 6p. (EMCAPA-Comunicado Técnico, 17).
- 2 VARGAS, A.A.T. & SANTOS, A.F. <u>Fixação simbiótica do nitrogênio no feljoeiro</u>.

 Fertilização com micronutrientes. Cariacica-ES, EMCAPA, 1983. 5p.
 (EMCAPA-Comunicado Técnico, 14).

5

- 3 VARGAS, A.A.T. <u>Fixação simbiótica no nitrogênio no feijoeiro</u>. 11. Inoculação de cinco cultivares com *Rhizobium phaseoli*. Cariacica-ES, EMCAPA, 1983.3p. (EMCAPA Comunicado Técnico, 15).
- 4 PACOVA, B.E.V.; SANTOS, A.F.; VARGAS, A.A.T. & CANDAL NETO, J.F. <u>Avaliação de</u> <u>feijoeiros do grupo preto no Espírito Santo</u>. Cariacica-ES, EMCAPA, 1983. 6p. (EMCAPA - Comunicado Técnico, 13).
- 5 CANDAL NETO, J.F. & PACOVA, B.E.V. <u>Rio Tibagi</u>. Nova cultivar de feijão para o Espírito Santo. Cariacica-ES, EMCAPA, 1980. 4p. (EMCAPA Indicação EMCAPA, 1)

EMCAPA, 10 ANOS: IDEIAS, TRABALHO E SOLUÇÕES

EMCAPA Empresa Capixaba de Pesquisa Agropecuária Caixa Postal - 125 29.154 - Campo Grande - Cariacica (ES)

Vinculada à Secretaria de Estado da Agricultura

CEP