

CULTURA DA ALFACE

CULTURA DA ALFACE

Organizadores

Luiz Fernando Favarato

José Salazar Zanuncio Junior

Maurício José Fornazier

© 2022 - Incaper

Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural Rua Afonso Sarlo, 160, Bento Ferreira, Vitória-ES, Brasil CEP 29052-010 - Telefones: (27) 3636-9888/ 3636-9846 www.incaper.es.gov.br / coordenacaoeditorial@incaper.es.gov.br / https://editora.incaper.es.gov.br/

ISBN 978-65-00-45672-1

DOI: 10.54682/livro.9786500456721

Editor: Incaper Formato: Digital Julho/2022

Conselho Editorial

Presidente - Sheila Cristina Prucoli Posse

Gerência de Transferência de Tecnologia e Conhecimento – Vanessa Alves Justino Borges Gerência de Pesquisa, Desenvolvimento e Inovação – José Salazar Zanuncio Junior Gerência de Assistência Técnica e Extensão Rural – Fabiano Tristão Alixandre Coordenação Editorial – Aparecida de Lourdes do Nascimento e Marcos Roberto da Costa (Coor-

denador Adjunto)

Membros:

Anderson Martins Pilon José Aires Ventura

André Guarçoni Martins Marianna Abdalla Prata Guimarães

Fabiana Gomes Ruas Mauricio Lima Dan Felipe Lopes Neves Renan Batista Queiroz

Equipe de produção

Projeto Gráfico, Capa e Diagramação:

Phábrica de Produções: Alecsander Coelho, Daniela Bissiguini, Érsio Ribeiro e Paulo Ciola

Revisão Textual: Agência Comunica - Nadine Ribeiro G. Martin

Ficha Catalográfica: Merielem Frasson da Silva

Crédito das Fotos: Acervo dos autores

Incaper – Biblioteca Rui Tendinha Dados Internacionais de Catalogação na Publicação (CIP)

C968 Cultura da alface / Luiz Fernando Favarato, José Salazar Zanuncio Junior, Maurício José Fornazier, organizadores; [autores] Ana Paula de Oliveira Siqueira ... [et al.]. – Vitória, ES: Incaper, 2022.

136 p.: il. PDF; 9, 62 MB.

E-book, no formato PDF. ISBN 978-65-00-45672-1

DOI: 10.54682/livro.9786500456721

1.Hortaliça Folhosa.2.Alface.3.Reprodução Vegetal.4. Calagem. 5. Doença. I. Favarato, Luiz Fernando (org.). II. Zanuncio Junior, José Salazar (org). III. Maurício José Fornazier (org.). IV. Siqueira, Ana Paula de Oliveira. V. Incaper. VI. Título.

CDD 635

Ficha catalográfica elaborada por Merielem Frasson da Silva – CRB-6 ES/675.

APRESENTAÇÃO

O Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (Incaper) orgulha-se do lançamento e disponibilização do livro "Cultura da Alface". Para os profissionais da área agronômica, estudantes, produtores e apreciadores das tecnologias relacionadas ao cultivo da alface.

Esta obra, sob a organização dos pesquisadores Luiz Fernando Favarato, Maurício José Fornazier e José Salazar Zanúncio Júnior, contempla 9 capítulos, com estruturas independentes, de informações tecnológicas, as quais abordam desde mercado, técnicas de produção de mudas e manejos da cultura, até aspectos de pós-colheita sobre a cultura da alface. Com a participação de 14 autores e coautores, o livro "Cultura da Alface" constitui-se em mais uma obra-prima da agricultura moderna, com conhecimentos capazes de promover, de forma sustentável, aumento e distribuição de renda, manutenção do homem no campo e redução das desigualdades sociais.

Assim, em seu sexagésimo quinto aniversário de existência, o Incaper comemora essa data, tendo a honra de disponibilizar à sociedade esta obra que reflete o dedicado trabalho de muitos de seus profissionais que, interagindo com esmero e profissionalismo com equipes de pesquisadores de outras instituições, num trabalho de contínua e profícua parceria, vem proporcionando a elucidação de muitos aspectos, de diversas áreas do conhecimento que envolvem as atividades relacionadas a esse agronegócio.

Nesta oportunidade, o Instituto parabeniza todos os seus servidores que se dedicaram e dedicam seu trabalho à cultura da alface, que está no dia a dia dos capixabas.

Diretor-Presidente Lázaro Samir Abrantes Raslan

Diretora-TécnicaSheila Cristina Prucoli Posse

Diretor Administrativo-Financeiro
Cleber Guerra

AGRADECIMENTOS

A todos aqueles que, de alguma forma, contribuíram para a realização deste trabalho, em especial aos pesquisadores, extensionistas e técnicos agrícolas que estiveram envolvidos nos trabalhos que levaram ao desenvolvimento das tecnologias apresentadas nesta publicação;

Às instituições de fomento à pesquisa em diferentes momentos, seja com financiamento de projetos, seja com concessão de bolsas de produtividade, de apoio técnico, de iniciação científica, entre os quais o CNPq, Fapes e Seag;

Aos produtores que colocaram suas propriedades à disposição para a condução das pesquisas de campo e que se dedicaram no compartilhamento das atividades de acompanhamento dos trabalhos de campo e afins;

Aos servidores do Incaper atuantes nas diferentes etapas do desenvolvimento dos trabalhos (campo, administração, laboratórios);

Aos revisores técnicos pelas sugestões, pela presteza e pela atenção permanente.

ORGANIZADORES

Luiz Fernando Favarato

Engenheiro-Agrônomo formado pela Universidade Federal de Viçosa em 2010. Mestre em 2012 e Doutor em 2015 em Fitotecnia, pela Universidade Federal de Viçosa. Apresenta trinta e quatro artigos científicos publicados em revistas, autoria em um livro e cinco capítulos de livros, uma patente registrada no Instituto Nacional da Propriedade Industrial. Participa como revisor do ad hoc dos periódicos Engenharia na Agricultura, Revista Brasileira de Agropecuária Sustentável, Revista Ceres e Revista Brasileira de Milho e Sorgo; publicou matérias técnicas sobre as culturas da couve-flor, repolho e cenoura na revista Campo e Negócio. Desde 2013, atua como pesquisador do Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, onde coordenou os projetos de pesquisa "Influência de diferentes sistemas de cultivo sobre a produção de alface de qualidade ao longo de todo o ano na região serrana do Espírito Santo" aprovado no edital Universal Individual/2014 Fapes, "Uso de papel kraft como alternativa para o controle de plantas daninhas no cultivo da alface", aprovado no edital ICJr/Fapes, no qual orientou dez alunos bolsistas de nível médio/técnico, e participa como coordenador de estudo científico "Manejo de plantas de cobertura de solo de inverno e verão no sistema plantio direto em cultivos orgânicos de hortaliças". Além disso, coordena o projeto "processos de compostagem com lodo de café e eficiência agronômica em cultivos de milho e feijão" aprovado na chamada universal MCTI/CNPq Nº 01/2016.

José Salazar Zanuncio Junior

Zootecnista, com Mestrado (2003) e Doutorado (2007) em Entomologia pela Universidade Federal de Viçosa e Especialização em Educação do Campo pela Universidade Federal do Espírito Santo (2009), tendo atuado como professor de nível superior do Centro de Ciências Agrárias da Ufes e de nível técnico da Escola Família Agrícola (EFA) de Castelo do Movimento de Educação Promocional do Espírito Santo (Mepes). Atua como pesquisador do Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (Incaper), na área de Entomologia aplicada, dando ênfase ao Manejo Integrado e Controle Alternativo de artrópodes pragas e como professor do Programa de Pós-Graduação em Agroecologia do Ifes- Campus Alegre, ministrando a disciplina "Manejo Agroecológico de Pragas e Doenças".

Maurício José Fornazier

Engenheiro-Agrônomo, formado em 1982 pela Escola Superior de Agricultura Luiz de Queiróz (Esalq), Universidade de São Paulo (USP). Mestre em Entomologia em 1984 pela Esalq/USP e Doutor em Entomologia em 2016 pela Universidade Federal de Viçosa (UFV). Em 1984, ingressou na Empresa Capixaba de Pesquisa Agropecuária (Emcapa), atual Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (Incaper), no cargo de pesquisador I-A, em que atua como Agente de Desenvolvimento Rural IV-15, função pesquisador. Exerce pesquisas na área de Manejo Integrado de Pragas (MIP) em hortaliças, fruticultura e cafeicultura sustentável de arábica e conilon/robusta. Atualmente, também coordena o projeto "Terroir dos cafés arábicas do Espírito Santo". É consultor ad hoc de diversas revistas científicas nacionais e internacionais e possui diversos artigos científicos e técnicos e capítulos de livros publicados. Realiza palestras e treinamentos para capacitação de agricultores e profissionais nas áreas de Manejo Integrado de Pragas (MIP) e sustentabilidade da propriedade agrícola.

AUTORES

Ana Paula de Oliveira Siqueira

Engenheira-Agrônoma, M.Sc. Agroecologia, Agente de Extensão em Desenvolvimento Rural, Escritório Local de Desenvolvimento Rural de Itapemirim, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

André Guarçoni

Engenheiro-Agrônomo, D.Sc. Solos e Nutrição de Plantas, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Centro Regional Centro-Serrano, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

Cleber Cássio Ferreira

Administração, M.Sc. Agroecologia, Agente de Extensão em Desenvolvimento Rural, Centro Regional Sudoeste Serrano, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

Danielle Cunha de Souza Pereira

Graduada em Ciência e Tecnologia de alimentos, Mestre em Ciência e Tecnologia de alimentos e Doutora em Ciência e Tecnologia de alimentos, Professora do Instituto Federal de Roraima, Campus Amajari.

David dos Santos Martins

Engenheiro-Agrônomo, D.Sc. Entomologia, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Gerência de Pesquisa, Desenvolvimento e Inovação, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

Hélcio Costa

Engenheiro-Agrônomo, D.Sc. Fitopatologia, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Centro Regional Centro-Serrano, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

Inorbert de Melo Lima

Engenheiro-Agrônomo, D.Sc. Fitopatologia, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Centro de Pesquisa, Desenvolvimento e Inovação Norte, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

José Aires Ventura

Engenheiro-Agrônomo, D.Sc. Fitopatologia, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Gerência de Pesquisa, Desenvolvimento e Inovação, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

José Mauro de Sousa Balbino

Engenheiro-Agrônomo, D.Sc. Fisiologia Vegetal, Agente de Pesquisa e Inovação em Desenvolvimento Rural Aposentado, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Professor, Faculdade Venda Nova do Imigrante - Faveni.

José Salazar Zanuncio Junior

Zootecnista, D.Sc. Entomologia, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Centro Regional Centro-Serrano, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

Luiz Fernando Favarato

Engenheiro-Agrônomo, D.Sc. Fitotecnia, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Centro Regional Centro-Serrano, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

Maurício José Fornazier

Engenheiro-Agrônomo, D.Sc. Entomologia, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Centro Regional Centro-Serrano, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

Renan Batista Queiroz

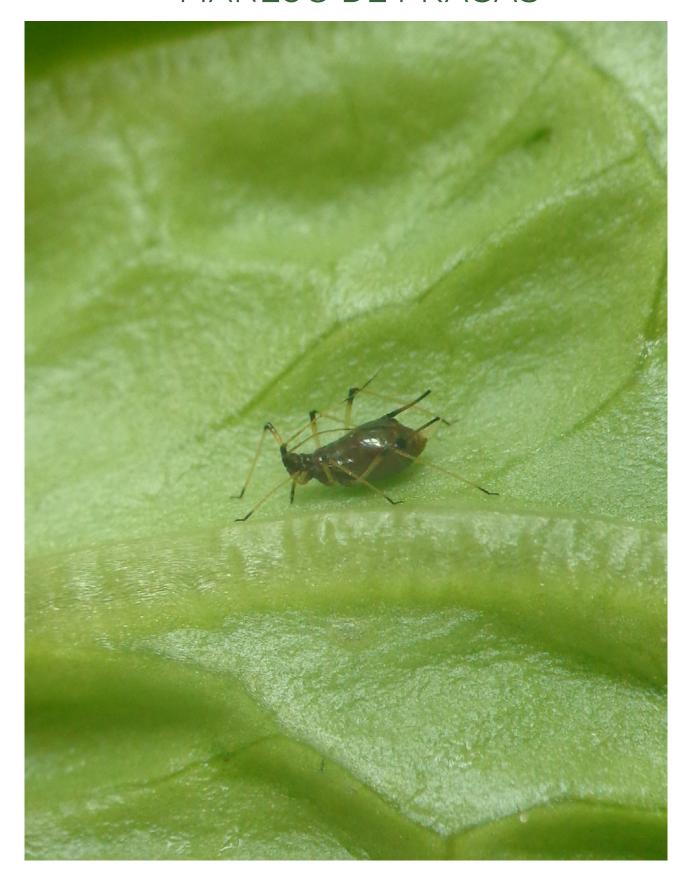
Engenheiro-Agrônomo, D.Sc. Entomologia, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Centro de Pesquisa, Desenvolvimento e Inovação Norte, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

Rogério Carvalho Guarçoni

Engenheiro Agrícola, D.Sc. Engenharia Agrícola, Agente de Pesquisa e Inovação em Desenvolvimento Rural, Centro Regional Centro-Serrano, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural.

SUMÁRIO

C	APÍTULO 1 - A CULTURA	. 21
	1 INTRODUÇÃO	. 22
	2 CARACTERIZAÇÃO BOTÂNICA	. 23
	3 CLIMA E ÉPOCA DE PLANTIO	. 24
	4 CULTIVARES	. 25
	4.1 REPOLHUDA LISA	. 26
	4.2 REPOLHUDA CRESPA OU AMERICANA	. 26
	4.3 SOLTA LISA	. 26
	4.4 SOLTA CRESPA	. 27
	4.5 TIPO MIMOSA	. 27
	4.6 TIPO ROMANA	
	5 CONSIDERAÇÕES FINAIS	. 28
	REFERÊNCIAS	
C/	APÍTULO 2 - PRODUÇÃO DE MUDAS	
	1 INTRODUÇÃO	. 32
	2 GERMINAÇÃO DAS SEMENTES	
	3 PRODUÇÃO DAS MUDAS	
	4 CONSIDERAÇÕES FINAIS	. 38
	REFERÊNCIAS	. 38


CAPÍTULO 3 - PREPARO DO SOLO E TRANSPLANTIO	41
1 INTRODUÇÃO	42
2 PREPARO DO SOLO	42
3 ESPAÇAMENTO DE PLANTIO	43
4 SISTEMAS DE PLANTIO	43
5 CONSIDERAÇÕES FINAIS	47
REFERÊNCIAS	47
CAPÍTULO 4 - CALAGEM E ADUBAÇÃO	49
1 INTRODUÇÃO	50
2 AMOSTRAGEM DE SOLO E FOLIAR	50
2.1 AMOSTRAGEM DE SOLO REPRESENTATIVA	50
2.2 SISTEMA DE AMOSTRAGEM	51
2.3 CUIDADOS NA COLETA	51
2.4 IMPLANTAÇÃO DA LAVOURA	52
2.5 AMOSTRAGEM FOLIAR	52
2.5.1 Interpretação dos resultados das análises foliares	52
3 CALAGEM	53
3.1 DOSE DE CALCÁRIO	53
3.2 TIPOS DE CALCÁRIO	54
3.3 MANEJO DA CALAGEM	54
4 ADIÇÃO DE MATÉRIA ORGÂNICA	54
5 ADUBAÇÃO	55
5.1 MACRONUTRIENTES	55
5.2 MICRONUTRIENTES	58
6 ANOMALIAS FISIOLÓGICAS	58
7 CONSIDERAÇÕES FINAIS	60
REFERÊNCIAS	60
CAPÍTULO 5 - MANEJO DE PRAGAS	61
1 INTRODUÇÃO	62
2 PULGÕES	62
3 TRIPES	63
4 MOSCA-BRANCA	64
5 MOSCAS-MINADORAS	64
6 LAGARTAS	64
7 LESMAS E CARACÓIS	66
8 TÁTICAS DE MANEJO	66
8.1 CONTROLE CULTURAL	66
8.2 MÉTODOS FÍSICOS E MECÂNICOS	67

8.3 CONTROLE QUÍMICO	67
8.4 CONTROLE ALTERNATIVO	67
9 CONSIDERAÇÕES FINAIS	67
REFERÊNCIAS	68
CAPÍTULO 6 - DOENÇAS DA ALFACE NO ESTADO DO ESPÍRITO SANTO:	
DIAGNOSE E MANEJO	71
1 INTRODUÇÃO	72
2 DOENÇAS CAUSADAS POR FUNGOS	72
2.1 MÍLDIO (<i>Bremia lactucae</i>)	72
2.1.1 Como reconhecer a doença	73
2.1.2 Como a doença se dissemina	73
2.1.3 Condições que favorecem a doença	73
2.1.4 Manejo da doença	74
2.2 MANCHAS FOLIARES (Septoria lactucae e Cercospora longissima)	74
2.2.1 Como reconhecer as doenças	74
2.2.2 Como as doenças se disseminam	75
2.2.3 Condições que favorecem as doenças	75
2.2.4 Manejo das doenças	75
2.3 MURCHA DE FUSARIUM (Fusarium oxysporum f. sp. lactucae)	75
2.3.1 Como reconhecer a doença	76
2.3.2 Como a doença se dissemina	76
2.3.3 Condições que favorecem a doença	77
2.3.4 Manejo da doença	77
2.4 MOFO-CINZENTO (<i>Botrytis cinerea</i>)	77
2.4.1 Como reconhecer a doença	78
2.4.2 Condições favoráveis à doença	78
2.4.3 Como a doença se dissemina	78
2.4.4 Manejo da doença	78
2.5 PODRIDÃO OU MOFO DE ESCLEROTÍNIA (Sclerotinia sclerotiorum e S. minor)	78
2.5.1 Como reconhecer a doença	78
2.5.2 Como a doença se dissemina	79
2.5.3 Condições favoráveis à doença	80
2.5.4 Manejo da doença	80
2.6 MURCHA DE ESCLERÓDIO OU PODRIDÃO DO COLO (Sclerotium rolfsii)	80
2.6.1 Como reconhecer a doença	80
2.6.2 Como a doença se dissemina	81
2.6.3 Condições favoráveis à doença	81
2.6.4 Como controlar a doença	81
3 DOENÇAS CAUSADAS POR BACTÉRIAS	81

3.1 TALO-OCO (<i>Pectobacterium</i> (sinonímia <i>Erwinia</i>) spp.)	81
3.1.1 Como reconhecer a doença	82
3.1.2 Como a doença se dissemina	82
3.1.3 Condições que favorecem a doença	82
3.1.4 Manejo da doença	82
3.2 MANCHA-BACTERIANA (Xanthomonas axonopodi pv.vitians)	82
3.2.1 Como reconhecer a doença	82
3.2.2 Como a doença se dissemina	83
3.2.3 Condições que favorecem a doença	83
3.2.4 Manejo da doença	83
4 DOENÇAS CAUSADAS POR NEMATOIDES	83
4.1 PRINCIPAIS FITONEMATOIDES QUE PARASITAM AS RAÍZES DA ALFACE	84
4.1.1 Como reconhecer a doença	84
4.1.2 Estimativa de perda	84
4.1.3 Condições que favorecem a doença	84
4.1.4 Como a doença se dissemina	85
4.1.5 Manejo da doença	85
4.1.6 As medidas que devem ser utilizadas são:	85
5 DOENÇAS CAUSADAS POR VÍRUS	85
5.1 VIRA-CABEÇA (Tospovirus)	85
5.1.1 Como reconhecer a doença	86
5.1.2 Como a doença se dissemina	86
5.1.3 Condições favoráveis à doença	86
5.1.4 Manejo da doença	86
5.2 MOSAICO (<i>Lettuce mosaic virus</i> -LMV)	87
5.2.1 Como reconhecer a doença	87
5.2.2 Como a doença se dissemina	87
5.2.3 Condições que favorecem a doença	87
5.2.4 Manejo da doença	
6 OUTRAS DOENÇAS	88
7 MEDIDAS GERAIS QUE DEVEM SER ADOTADAS PARA O MANEJO DAS DOENÇAS	
DA ALFACE VISANDO UMA MAIOR SUSTENTABILIDADE DA CULTURA NO ESTADO	
8 CONSIDERAÇÕES FINAIS	
REFERÊNCIAS	
CAPÍTULO 7 - MANEJO DA IRRIGAÇÃO	
1 INTRODUÇÃO	
2 DISPONIBILIDADE DE ÁGUA NO SOLO	
3 MÉTODO DE IRRIGAÇÃO	
3.1 MÉTODO DE IRRIGAÇÃO POR ASPERSÃO	
3.2 MÉTODO DE IRRIGAÇÃO LOCALIZADA	95

4 MANEJO DA IRRIGAÇÃO	96
5 CONSIDERAÇÕES FINAIS	
REFERÊNCIAS	
CAPÍTULO 8 - MANEJO DE PLANTAS DANINHAS	
1 INTRODUÇÃO	
2 MÉTODOS DE CONTROLE	
2.1 CONTROLE PREVENTIVO	105
2.2 CONTROLE CULTURAL	105
2.3 CONTROLE MECÂNICO	107
2.4 CONTROLE QUÍMICO	107
3 CONSIDERAÇÕES FINAIS	108
REFERÊNCIAS	108
CAPÍTULO 9 - BOAS PRÁTICAS DE COLHEITA E DE PÓS-COLHEITA	
E O PADRÃO DE QUALIDADE DA ALFACE	
1 INTRODUÇÃO	
2 RECOMENDAÇÕES PARA A COLHEITA	111
3 RECOMENDAÇÕES NA PÓS-COLHEITA	113
3.1 ASPECTOS FISIOLÓGICOS: IMPORTÂNCIA DA REFRIGERAÇÃO	113
3.2 A PRÁTICA DO PRÉ-RESFRIAMENTO	
3.2.1 Hidrorresfriamento	
3.2.2 Armazenamento refrigerado	115
4 INFRAESTRUTURA DA CASA DE EMBALAGEM	116
4.1 TANQUES PARA LAVAGEM E SANITIZAÇÃO	118
4.2 BANCADA PARA ESCOAMENTO DA PRODUÇÃO	118
4.3 ÁREA EXTERNA À CASA DE EMBALAGEM	118
5 SEGURANÇA DO ALIMENTO	118
5.1 CONTAMINAÇÃO MICROBIOLÓGICA	120
5.1.1 Fonte de água e os riscos de contaminação	123
5.1.2 Saúde e higiene pessoal dos trabalhadores e os riscos de contaminado	
do produto	
5.1.3 Análise geral sobre controle do risco microbiológico	
5.2 CONTAMINAÇÃO POR AGROTÓXICOS	
5.2.1 Resultados do Programa de Análise de Resíduos de Agrotóxicos	
5.3 RASTREABILIDADE	
6 CLASSIFICAÇÃO E EMBALAGEM	
7 DISTRIBUIÇÃO, COMERCIALIZAÇÃO E ABASTECIMENTO DOMÉSTICO	
8 CONSIDERAÇÕES FINAIS	
REFERÊNCIAS	132

CAPÍTULO 5MANEJO DE PRAGAS

MANEJO DE PRAGAS

José Salazar Zanuncio Junior¹

Maurício José Fornazier²

Renan Batista Queiroz³

Cleber Cássio Ferreira⁴

Maurício Lorenção Fornazier⁵

David dos Santos Martins⁶

1 INTRODUÇÃO

O termo pragas é comumente utilizado no Brasil para designar insetos e ácaros que causam danos econômicos às plantas. As pragas associadas ao cultivo da alface possuem rápido crescimento populacional e podem causar expressivos danos diretos em curto espaço de tempo. Além disso, podem transmitir viroses, problema maior que os danos diretos e que podem inviabilizar o cultivo em determinadas áreas e/ou regiões. Necessitam ser adequadamente manejadas observando as regras contidas no Manual de Boas Práticas para produção de alface (MAL-DANE; MATTOS; MORETTI, 2014), focando seu crescente consumo in natura em todo o mundo, tanto nos sistemas de cultivo convencional e o sistema orgânico em campo aberto ou cultivo protegido no sistema hidropônico e no solo (FIL-GUEIRA, 2005). Assim, precisa-se produzir um alimento seguro, nutritivo e livre de agrotóxicos. Cerca de 45 espécies de pragas são relatadas ocorrendo na alface no Brasil, entre elas insetos da família Agromyzidae (Diptera), Chrysomelidae (Coleoptera), Aphidae e Cicadelidae (Hemiptera), Noctuidae (Lepidoptera), Gryllidae e Gryllotalpidae (Orthoptera) e Thripidae (Thysanoptera). Também são relatados os moluscos, como as lesmas e caracóis (Pulmonata).

2 PULGÕES

Dactynotus sonchi (Hemiptera: Aphididae)

Myzus persicae (Sulzer) (Hemiptera: Aphididae)

Insetos de 1 a 2 mm de comprimento, corpo piriforme mole, antenas bem desenvolvidas e aparelho bucal tipo sugador. No final do corpo possuem dois apêndices tubulares laterais chamados sifúnculos e um central, chamado codícola por onde são expelidas grandes quantidades de líquido adocicado proveniente de sua alimentação (Figura 1). Vivem agrupados em colônias, principalmente na face inferior das folhas da alface (GUIMARÃES et al., 2011). São muitas as espécies que atacam esta cultura, dos quais se destaca o *M. persicae* por ser vetor de viroses. As ninfas e adultos sem asas apresentam coloração verde-clara, rosada ou avermelhada;

 $^{^1\,}Zootecnista,\,D.Sc.\,\,Entomologia,\,Pesquisador\,Incaper,\,jose.zanuncio@incaper.es.gov.br.$

² Engenheiro-Agrônomo, D.Sc. Entomologia, Pesquisador Incaper.

³ Engenheiro-Agrônomo, D.Sc. Entomologia, Pesquisador Incaper.

⁴ Administração, M.Sc. Agroecologia, Extensionista Incaper.

⁵ Biólogo, Mestrando em Agroecologia.

⁶ Engenheiro-Agrônomo, D.Sc. Entomologia, Pesquisador Incaper, Pesquisador Voluntário Incaper.

Figura 1 – Detalhe do pulgão da alface (*Dactynotus sonchi*).

adultos alados possuem abdome verde-amarelado, cabeça e tórax pretos. Adultos e ninfas sugam continuamente a seiva de tecidos tenros da planta e injetam toxinas que provocam definhamento de mudas e plantas jovens e encarquilhamento das folhas. O líquido açucarado expelido por elevadas infestações de pulgões favorece o desenvolvimento do fungo Capnodium. Esse fungo é o causador do aparecimento de camada escura que cobre as folhas (fumagina) e afeta a fotossíntese. Este pulgão também é o vetor do vírus do mosaico em alface (Lettuce mosaic virus - LMV) que causa enrugamento, deformação e necrose foliar. Também é importante na produção de sementes de alface, pois plantas infectadas podem transmiti-lo para novos cultivos via sementes.

3 TRIPES

Frankliniella occidentalis (Pergande); F. schultzei Trybom; Thrips tabaci Lindeman; Thrips palmi Karny (Thysanoptera: Thripidae)

F. occidentalis – adultos de coloração castanha escura à amarela pálida, de acordo com o ambiente; formas jovens brancas à amareladas. F. schultzei – adultos de coloração marrom-escura à preta e as formas jovens são amarelas.

Thrips tabaci – adultos com coloração amarelo--claro à marrom, pernas mais claras que o corpo e ovipositor curvado para baixo. As formas jovens são amarelo-esverdeadas com antenas e pernas quase incolores. Thrips palmi - adultos com coloração amarelada, sem manchas e cerdas escuras; as formas jovens são amarelas. Todas as espécies são insetos diminutos, com cerca de 3 mm de comprimento, cabeça quadrangular (Figura 2), aparelho bucal usado para raspar as folhas. Os adultos possuem asas estreitas e franjadas e as formas jovens não têm asas. Apresentam reprodução sexuada. Vivem na face inferior das folhas e ficam abrigados entre dobras e reentrâncias das plantas. Os tripes sugam o conteúdo celular das plantas e as folhas ficam com aspecto queimado ou prateado e pontuações escuras. O maior dano que causam à alface é por meio da transmissão de viroses como o vira-cabeça (Groundnut ringspot virus - GRSV; Tomato chlorotic spot virus - TCSV e Tomato Spotted wilt virus - TSWV) que debilitam as plantas e podem inviabilizar a produção de sementes (LIMA et al., 2016).

Figura 2 - Detalhe do tripes adulto.

Figura 3 - Adulto da mosca-branca.

4 MOSCA-BRANCA

Bemisia tabaci (Gennadius) biótipo B (Hemiptera: Aleyrodidae)

Inseto sugador, com 1-2 mm de comprimento na fase adulta, dorso amarelo-palha, quatro asas membranosas recobertas com pulverulência branca; as asas permanecem levemente separadas quando em repouso (Figura 3). Os ovos apresentam coloração amarelada, formato piriforme, colocados isoladamente na parte inferior da folha e presos por um pedicelo (HAJI et al., 2005). As ninfas são translúcidas, de coloração amarelo à amarelo-pálido e apenas o primeiro estágio de ninfa é móvel; os demais permanecem fixos na planta. O quarto estágio é chamado de pseudo-pupa ou pupário devido à redução do metabolismo (GUIMARÃES et al., 2011). Causa danos diretos à alface pela sucção contínua da seiva, ação de injeção de toxinas que provoca alterações no crescimento vegetativo e reprodutivo das plantas. Também favorecem o desenvolvimento da fumagina (semelhante aos pulgões), reduzindo a fotossíntese.

5 MOSCAS-MINADORAS

Liriomyza spp. (Diptera: Agromyzidae)

O gênero Liriomyza é composto por 376 espécies. Liriomyza huidobrensis (Blanchard), L. sativae Blanchard e L. trifolii (Burgess) são nativas do Novo Mundo e possuem distribuição nas Américas do Norte e Sul, têm ocorrência em quase todos os estados e atacam cerca de 14 famílias de plantas. Larvas de Liriomyza sp. constroem galerias ou minas de coloração translúcida no mesófilo foliar. As minas são estreitas, alongadas e construídas de forma irregular. Geralmente apresentam excrementos escuros no seu interior. Os adultos são pequenas moscas de coloração predominantemente preta com manchas amareladas e medem de 1 a 3 mm de comprimento. As fêmeas utilizam seu ovipositor para colocar ovos no parênquima foliar e fazer puncturas nas folhas. Ocorre exsudação de conteúdo celular, do qual machos e fêmeas se alimentam. Os adultos são ágeis e podem ser encontrados na borda mais externa das folhas (GUIMARÃES et al., 2009). Uma das espécies mais importantes é L. sativae (Blanchard) que pode causar necroses e queda prematura das folhas. Em locais de temperaturas mais amenas a espécie predominante é L. huidobrensis. Liriomyza sativae e L. trifolii predominam em regiões mais quentes.

6 LAGARTAS

Lagarta-das-folhas - *Spodoptera eridania* (Cramer, 1782) (Lepidoptera: Noctuidae)

Falsa-medideira - *Chrysodeixis includens* (Lepidoptera: Noctuidae)

Lagarta-militar - Spodoptera frugiperda (Lepidoptera: Noctuidae)

Lagarta-rosca - *Agrogis ipsilon* (Lepidopte-ra: Noctuidae)



Figura 4 - Adulto da mosca-minadora (A). Sintoma nas folhas causada pelas larvas (B).

O adulto de *S. eridania* é uma mariposa de coloração cinzenta-clara, tendo nas asas anteriores acinzentadas uma mancha escura na borda superior da asa e uma mancha negra no centro das mesmas. As lagartas possuem coloração variável; quando jovens geralmente são cinza-escuro, com uma faixa lateral longitudinal esbranquiçada, que é interrompida por uma mancha escura no tórax (Figura 5A); quando desenvolvidas são cinza-claro com desenhos pardos sobre o corpo (PRATISSOLI; GONÇALVES, 2015). Já a lagarta-militar *S. frugiperda*, também conhecida como lagarta do

cartucho apresenta coloração de cinza-escuro à marrom, com uma faixa no dorso com pontos pretos na base das cerdas.

As lagartas de *C. includens apresentam* coloração esverdeada e três pares de pernas abdominais (Fig. 5B), o que obriga seu deslocamento à semelhança das lagartas mede-palmo, sendo por isso conhecidas como falsas-medideiras, enquanto as lagartas-rosca *A. ipsilon* são de coloração pardo-acinzentada escura e têm hábitos noturnos, ficando abrigadas no solo durante o dia, geralmente enroladas próximo à base das plantas (GALLO *et al.*, 2002).

Figura 5 - Lagartas de S. eridania (A) e C. includens (B) em alface.

Figura 6 - Detalhe da lesma em alface (A). Detalhe do caracol (B).

7 LESMAS E CARACÓIS

Não são insetos. Lesmas apresentam coloração escura e não têm carapaça (Figura 6A); os caracóis possuem estrutura calcária em forma de espiral (Figura 6B). Se abrigam embaixo de palhas, tocos e lugares úmidos e se alimentam à noite. Destroem as folhas e se instalam dentro das plantas e causam problemas na comercialização. Sistemas de cultivo com muita matéria orgânica e plantio direto na palha podem favorecer a ocorrência dessas pragas.

8 TÁTICAS DE MANEJO

Para melhor controle das pragas é necessário planejamento para o manejo e utilização dos dados históricos e atuais da área a ser implantada e do seu entorno, conforme recomenda o Manual de Boas Práticas Agrícolas na produção de alface. Através de medidas de prevenção e com monitoramento das principais pragas será possível realizar intervenções pontuais mais eficazes e minimizar o uso de agrotóxicos. É necessário adotar uma combinação de medidas conhecida como manejo integrado de pragas, onde todos os aspectos fitotécnicos da cultura devem ser observados para criar estratégia visando impedir a infestação e/ou disseminação da praga, além de diminuir o impacto ambiental (MALDANE; MATTOS; MORETTI, 2014). O manejo agroecológico pode favorecer o aumento da população de inimigos naturais, mantendo a população das pragas abaixo do nível de dano (SILVA et al., 2011).

8.1 CONTROLE CULTURAL

- Usar sementes sadias e isentas de viroses;
- Produzir as mudas em locais protegidos com tela antiafídeos e longe de campos onde tenham ocorrido viroses;
 - Selecionar mudas sadias e vigorosas;
 - Evitar escalonamento de plantio;
- Implantar os talhões mais novos no sentido contrário ao vento para desfavorecer a movimentação de pragas;
- Adubar com base na análise de solo ou foliar e evitar excesso de nitrogênio;
- Manejar a irrigação para favorecer o rápido pegamento das mudas;
- Retirar rapidamente as plantas com viroses (roguing);
- Retirar e/ou não plantar próximo a plantas espontâneas, cultivadas e silvestres hospedeiras de mosca-branca, pulgões e tripes;
- Fazer rotação de culturas com gramíneas; e

Destruir os restos culturais.

8.2 MÉTODOS FÍSICOS E MECÂNICOS

- Plantar em ambiente protegido ou usar cobertura das plantas com TNT (tecido não tecido) (HENZ; SUINAGA, 2009);
- Implantar barreiras vivas, com capim elefante, crotalária, milheto ou sorgo, sempre perpendiculares à direção predominante do vento; sempre que possível, usar também plantas atrativas (ao redor do cultivo ou plantas repelentes (mastruz, cravo de defunto) entre os canteiros. Outra alternativa é o preparo de extrato de plantas repelentes (coentro, losna, arruda, cravo de defunto etc.) e pulverizar as plantas que estiverem sendo atacadas (MEIRA; LEITE, 2016).
- Cobertura do solo com superfície refletora de raios ultravioletas para dificultar a colonização dos insetos vetores:
 - Casca de arroz ou palha para pulgões alados;
- Plástico preto, prateado ou branco para mosca-branca:
- Monitorar as infestações com bandejas com água e/ou armadilhas adesivas:
- Cor amarela para pulgões alados e mosca-branca (MICHEREFF FILHO et al., 2013);
- Cor azul para tripes (GAERTNER; BORBA, 2014);

8.3 CONTROLE QUÍMICO

- Usar inseticidas registrados para a cultura (Quadro 1), seletivos aos inimigos naturais e pouco tóxicos ao homem;
- Utilizar a dose do produto indicada pelo fabricante e a quantidade de água conforme o estádio de desenvolvimento da cultura;

 Tratar as mudas pelo menos 48h antes do transplantio.

Excessivo uso de inseticidas químicos tem resultado na resistência a diferentes grupos químicos.

8.4 CONTROLE ALTERNATIVO

- Pulverizar óleo vegetal emulsionável ou inseticida à base de óleo de nim (*Azadirachta indica*); extrato de alho (10 mL) + extrato pimenta do reino (20 mL) + sabão dissolvido (100 mL), em baixa concentração na calda de pulverização; nunca usar mais que 0,5% v/v.
- Pulverizar bioinseticidas a base de *Bacillus thuringiensis* assim que perceber as lagartas nos estágios iniciais (lagartas pequenas) em intervalos de 5 a 7 dias. Pode-se fazer até três pulverizações. Para tripes a utilização do bioinseticida *Metarhizium anisopliae* pode alcançar eficiência de 60% seis dias após a pulverização (LOPES *et al.*, 2000).
- Distribuir pasta com cerveja e farelo ou ração sob sacos de estopa ou telha nos locais infestados e matar as lesmas e caracóis; colocar cal, cinza ou terra diatomácea em faixas de 20 cm de largura em volta da cultura para dificultar acesso (ZORZENON; CAMPOS, 2009). Para o controle de lesmas deve-se usar iscas moluscicidas à base de Ferramol (GLINSKI et al., 2019). A aplicação deve ser feita semanalmente a lanço nos canteiros, a partir de 14 dias antes do plantio, com solo úmido e no final da tarde.

9 CONSIDERAÇÕES FINAIS

O monitoramento das pragas na lavoura é um fator primordial para o sucesso do cultivo da alface. É importante salientar que este monitoramento seja constante e caso o produtor identifique o inseto-praga, que consulte um técnico para orientar sobre a melhor tática de manejo a ser adotada para sua situação.

REFERÊNCIAS

FILGUEIRA, F. A. R. Novo Manual de Olericultura – Agrotecnologia moderna na produção e comercialização de hortaliças. 2. ed. Viçosa, MG: Editora UFV, 2005. 412p. il.

GAERTNER, C.; BORBA, R. S. Diferentes cores de armadilhas adesivas no monitoramento de pragas em alface hidropônica. **Revista Thema**, v. 11, p. 4-11, 2014.

GALLO, D.; NAKANO, O.; SILVEIRA NETO, S.; CARVALHO, R. P. L.; BATISTA, G. C.; BERTI FILHO, E.; PARRA, J. R. P.; ZUCCHI, R. A.; ALVES, S. B.; VENDRAMIN, J. D.; MARCHINI, L. C.; LOPES, J. R. S.; OMOTO, C. **Entomologia agrícola**. Piracicaba: FEALQ, 2002. 920 p.

GLINSKI, L.; MALESKI, L. T.; AGUIAR, L. K.; SOUZA, M. T.; SOUZA, M. T.; ZAWADNEAK, M. A. C. Alternativas para o manejo de lesma *Meghimatium pictum* (Stylommathophora: Philonycidae). **Anais...** V CONBRAF, n. 384, 2019, 1p.

GUIMARÃES, J. A.; MICHEREFF FILHO, M.; LIZ, R. S. Manejo de pragas em campos de produção de sementes de hortaliças. Circular Técnica 94. Brasília, DF. Embrapa Hortaliças, 2011. 21 p.

GUIMARÃES, J. A.; MICHEREFF FILHO, M.; OLIVEIRA, V. R.; LIZ, R. S.; ARAÚJO, E. L. **Biologia e manejo de mosca minadora no meloeiro**. Brasília, DF. Embrapa Hortaliças. 2009. 9 p. (Circular Técnica, 77).

HAJI, F. N. P.; MATTOS, M. A. A.; ALENCAR, J. A.; BARBOSA, F. R.; PARANHOS, B. J. **Manejo da mosca-branca na cultura do tomate.** Petrolina, PE. Embrapa Semi-Árido, 2005. 14 p. (Circular Técnica 81).

HENZ, G. P.; SUINAGA, F. **Tipos de alface cultivados no Brasil**. Brasília, DF. Embrapa Hortaliças. 2009. 7 p. (Comunicado Técnico 75).

LIMA, M. F.; MICHEREFF FILHO, M.; BOITEUX, L. F.; SUINAGA, F. A. **Doença vira-cabeça em alface:** sintomatologia, transmissão, epidemiologia e medidas de controle. Brasília, DF. Embrapa Hortaliças. 2016. 16 p. (Circular Técnica, 153).

LOPES, R. B.; ALVES, S. B.; TAMAI, M. A. Fungo *Metarhizium anisopliae* e o controle de *Frankliniella occidentalis* em alface hidropônico. **Scientia Agricola,** v. 57, n. 2, p. 339-243, 2000.

MALDONADE, I. R.; MATTOS, L. M.; MORETTI, C. L. **Manual de boas práticas agrícolas na produção de alface.** Brasília, DF. Embrapa Hortaliças. 2014. 44 p. (Documentos, 142).

MAPA. Agrotóxicos registrados para a cultura da alface no Brasil. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acesso em: 30 jan. 2019

MEIRA, A.; LEITE, C. D. Plantas repelentes a insetos. In: Fichas Agroecológicas. Tecnologias apropriadas para a produção orgânica. **MAPA**, Brasília, DF, 2016, 217p.

MICHEREFF FILHO, M.; RESENDE, F. V.; VIDAL, M. C.; GUIMARÃES, J. A.; MOURA, A. P.; SILVA, P. S.; REYES, C. P. Manejo de pragas em hortaliças durante a transição agroecológica. Brasília, DF: Embrapa Hortaliças, 2013. 20 p. (Circular Técnica, 119).

PRATISSOLI, D.; GOLÇALVES, J. R. Brocão. In: PRATIS-SOLI, D. **Pragas emergentes do Espírito Santo.** Alegre: Unicopy, 2015, p. 46-53.

SILVA, A. C.; BUENO, V. H. P.; SILVA, D. B.; PETRAZZINI, L. L.; YURI, J. E. Manejo de pragas em alface americana no Sul de Minas Gerais e a sua relação com o controle biológico natural: um estudo de caso. Seropédica, RJ. Embrapa Agrobiologia. 2011. 6p. (Comunicado Técnico, 143).

ZORZENON, F.J.; CAMPOS, T.B. **Controle de caracóis e lesmas em hortaliças e plantas ornamentais.** 2009. Artigo em hipertexto. Disponível em: http://www.infobibos.com/Artigos/2009_1/Caracois/index.htm. Acesso em: 18 jan. 2019.

Quadro 1 - Grupo químico, princípio ativo, marca comercial, classificação toxicológica e ambiental (Tox/Amb), pragas e dose de inseticidas registrados no Mapa para a cultura da alface

(continua)

					(continua)
Grupo químico	Princípio ativo	Marca comercial	Tox/ Amb	Praga	Dose
Antranilamida	Ciantraniliprole	Benevia	NC/III	Liriomyza huidobrensis (mosca-minadora)	150 ml/ha
	Isaria fumosorosea	Octane	NC/IV	Helicoverpa armigera	1000-1500mL/ha
	Vírus VPN-HzSNPV	Armigen	NC/IV	(lagarta-armigera)	50-200mL/ha
		Agree	5/IV	Plutella xylostella (traça-das-crucíferas), Chrysodeixis includens (falsa-medideira), Helicoverpa rmígera (lagarta- armigera)	350-1000g/ha
	Bacillus thuringiensis	BtControl	5/IV	Chrysodeixis includens (falsa-medideira), Helicoverpa armigera (lagarta-armigera)	500-1000mL/ha
		Crystal	NC/IV	Spodoptera frugiperda (lagarta-militar)	100mL/ha
Inseticida microbiológico*		Dipel	NC/IV	Ascia monuste orseis (lagarta-da-couve)	100 ml/100L
		Thuricide SC	5/IV	Chrysodeixis includens (falsa-medideira)	0,3-0,5L/ha
		Xentari	5/III	Ascia monuste orseis (lagarta-da-couve); Plutella xylostella (traça-das- crucíferas)	35-75 g/100L
		Hunter	NC/IV	Chrysodeixis includens (falsa-medideira), Spodoptera frugiperda (lagarta-militar)	100-500 mil adultos/ha
	Trichogramma pretiosum	JB Tri-P			
		Trichomip P			
		Trichoibi P			
		Trilag			
	Orius insidiosus	Oriusibi			Frankliniella occidentalis (tripes)
Butenolida	Flupiradifurona	Sivanto Prime	4/111	Myzus persicae (pulgão)	0,5-1L/ha
Benzoiluréia	Teflubenzuron	Nomolt 150	NC/II	Spodoptera frugiperda (lagarta-militar)	25mL/100L
Cetoenol	Espiromesifeno	Oberon	NC/II	Bemisia tabaci	0,5-0,6L/ha
Inorgânico*	Fosfato férrico	Ferramol	NC/IV	Lesmas (Vaginula	10-15 Kg/ha
Inorgânico*		Sluggo	NC/III	langsdorff) e caracóis (Helix aspersa)	4-6 Kg/ha

(conclusão)

					(conclusão)
Grupo químico	Princípio ativo	Marca comercial	Tox/ Amb	Praga	Dose
	Triacloprido	Calypso	4/111	Thrips tabaci (tripes), Myzus persicae (pulgão)	20 mL/100L
	Imidacloprido	Evidence 700 WG	4/111	Bemisia tabaci raça B (mosca-branca); Dactynotus sonchi (pulgão)	300 g/ha
		Granary	4/111		
Neonicotinoide		Kohinor 200 SC Provado 200 SC	4/111	Myzus persicae (pulgão); Thrips tabaci (tripes);	70 mL/100L
				Frankliniella schultzei (tripes)	
		Warrant 700 WG	4/111	Dactynotus sonchi (pulgão)	300 g/ha
	Thiamethoxan	Actara 250 WG	5/III	Myzus persicae (pulgão)	200-300 g/ha
		Vivantha	4/111		100-150g/ha
Neonicotinoide + éter difenílico	Acetamiprido + etofenproxi	Eleito	4/I		75-100mL/100L
Neonicotinoide + piretróide	Acetamiprido + bifentrina	Sperto	3/I		15-25g/100L
Oxadiazina	Indoxacarbe	Rumo WG	4/111	Spodoptera frugiperda (lagarta-militar)	10 g/100L
Piretroide + benzoilureia	Alfa-cipermetrina + teflubenzurom	Imunity	4/11	Ascia monuste orseis (lagarta-da-couve); Spodoptera frugiperda (lagarta-militar)	30-50 mL/100L
Piretroide	Beta-ciflutrina	Bulldock 125 SC	4/11	Agrotis ipsilon (lagarta-rosca)	10 mL/100L
	Beta-cipermetrina	Akito	4/11	Brevicoryne brassicae (pulgão)	40-50 mL/100L
Piridina azometina	Pimetrozina	Chess 500 WG	5/IV	Myzus persicae (pulgão)	25-50 g/100L
Metilcarbamato	Cloridato de formetanato	Dicarzol	2/11	Frankliniella schultzei (tripes)	100g/100L
Oxadiazina	Indoxacarbe	Avatar	4/111	Spodoptera frugiperda (lagarta militar)	16mL/100L
Semicarbazone	Metaflumizone	Alverde	5/III	Spodoptera frugiperda (lagarta-militar), Agrotis ipsilon (lagarta-rosca)	80-100mL/100L
		Verismo	5/111	ipanori (iaganta-1050a)	
Hidrocarbonetos terpênicos	Óleo de laranja	Prev-AM	5/IV	Brevicoryne brassicae (pulgão)	600-800mL/100L
Alcalóides quinolizidínicos	Extrato de Oximatrine	Matrine	5/IV	Frankliniella schultzei (tripes)	0,2-0,3L/100L
Tetranortriter- penoide*	Azadiractina	DalNeem EC Azamax	5/IV 5/IV	Myzus persicae (pulgão)	430-700mL/100L 150-200 mL/100L

Fonte: Agrofit (2021). *Todos os produtos possuem uso autorizado em todas as culturas que ocorram o alvo biológico.

Acesse gratuitamente a produção editorial do Incaper.

DOI: 10.54682/livro.9786500456721

