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Abstract
Genomic prediction has been proposed as the standard method to predict the genetic

merit of unphenotyped individuals. Despite the promising results reported in the

plant breeding literature, its routine implementation remains difficult for some crops.

This is the case with Coffea canephora, in which costs and availability of molecular

tools are major challenges for most breeding programs. To circumvent this, the use

of near-infrared spectroscopy (NIR) has been recently proposed as an alternative to

complement marker-assisted selection. The so-called phenomic selection relies on

the reflectance spectrum to capture similarities between individuals and emerges as

a valid approach for prediction. With promising results reported in multiple annual

crops, we hypothesize that phenomic prediction could be a cost-efficient approach to

incorporate into a practical coffee breeding program. To test it, we relied on a diverse

population of C. canephora, evaluated for yield production, in two geographical loca-

tions over four harvest seasons. Our contributions in this paper are twofold: (i) We

compared phenomic and genomic selection results, and showed large predictive abil-

ities when NIR is used as a predictor for within and across-location predictions, and

(ii) we presented a critical view of how both information sets could be combined into

a contemporaneous coffee breeding program. Altogether, our results show how multi-

omic information could be integrated in the same framework to leverage genetic gains

in the long term.

1 INTRODUCTION

Coffee possesses significant global importance, impacting the

cultural, economic, and social aspects of our society. It is esti-

mated that more than 3 billion cups are consumed daily. It
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contributes to an annual income of ∼$200 billion and pro-

vides jobs for 125 million people (Bozzola et al., 2021). With

a complex production chain, from seed to cup, the sustain-

ability of the crop can be affected by different factors. Plant

breeding has a pivotal role in this process. Positioned at the
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base of the chain, breeders have developed coffee varieties

that could meet the demand of consumers, retailers, farmers,

and roasters. This includes plants that combine high yield,

drink quality, and more resilience to the projected environ-

mental changes, exacerbated by the increase in temperatures

and erratic rainfalls (Davis et al., 2021).

Among multiple coffee species, production and consump-

tion are segmented into two main categories: Arabica (Coffea
arabica species) and Robusta/Conilon (Coffea canephora
species). Arabica represents ∼60% of the global production,

and it is considered the main source of drink quality. How-

ever, it is a delicate crop that is quite susceptible to diseases,

and with a narrow genetic diversity, genetic progress in the

species has been limited in the past decades. Likewise, recent

projections expect a reduction in Arabica production of ∼80%

by 2050, given the expected climate changes (Davis et al.,

2021; Imbach et al., 2017). In this context, Robusta/Conilon

production is gaining momentum in the coffee chain, emerg-

ing as a candidate for climate-smart cultivars (Ferrão, et al.,

2023). More adapted to higher temperatures and resilient to

diseases, its representation in the coffee market has increased

from 25% to 40% in the past three decades. While this demand

is not expected to slow down, the C. canephora industry

has important challenges for the future, including leveraging

its drink quality, uniformity of production, farmer profitabil-

ity, and adaptation to new production systems (WCR, 2023).

With these pressing factors, it is necessary to find new

methodologies that can keep pace with conventional coffee

breeding programs while also accelerating genetic gains and

the development of improved cultivars.

In C. canephora breeding programs, the use of phenotypic

evaluations associated with recurrent selection has been the

standard and has served as the basis for releasing most of the

available Robusta/Conilon cultivars (R. G. Ferrão et al., 2019;

Leroy et al., 1993; Montagnon et al., 2003). With the advent

of genomic prediction methods (Meuwissen et al., 2001), it

is possible to predict the genetic merit of plants during their

seedling stages using DNA information. This has the potential

to fasten the breeding cycles and ultimately leverage genetic

gain. In coffee, progress in using genomic-based methods has

been reported for C. canephora (L. V. F. Ferrão et al., 2017; L.

F. V. Ferrão et al., 2019; M. A. G. Ferrão et al., 2023; Adunola

et al., 2023) and C. arabica (Carvalho et al., 2023; Fanelli

Carvalho et al., 2020; Sousa et al., 2019). Despite the promis-

ing results in multiple coffee traits, its implementation is not

straightforward. In coffee, accessible genome-wide markers

that can be used routinely are still a major barrier for most

breeding programs (Mbebi et al., 2022).

To overcome the limitations underlying the use of molecu-

lar markers, recent studies have argued in favor of phenomic

selection based on near-infrared spectroscopy (NIR) informa-

tion (Rincent et al., 2018). The use of NIR has a long history

in the agronomy field. Originally proposed to predict target

Core Ideas
∙ Coffee has significant global importance, impact-

ing the cultural, economic, and social aspects of

our society.

∙ For genetic improvements, the availability of

affordable and accessible genome-wide markers is

still a major barrier for coffee breeding programs.

∙ The use of near-infrared spectroscopy (NIR) for

phenomics showed promising results in predicting

yield.

∙ Phenomic and genomic selection can be integrated

with an NIR framework to assist coffee breeders in

their decision-making.

traits, NIR is well known to be a high-throughput, low-cost,

and nondestructive method used to estimate the reflectance

of a sample for numerous wavelengths. However, its use for

predicting the genetic merit of unphenotyped individuals is

relatively new. The motivation behind using wavelengths is

analogous to the form that molecular markers are used in

genomic selection: as a metric to capture genetic similarities

between individuals and perform predictions (Rincent et al.,

2018; Zhu et al., 2021). While NIR has a long history in coffee

research, including the determination of geographical origin

(Giraudo et al., 2019), quality classification (Barbin et al.,

2014; Mutz et al., 2023), and determination of caffeine con-

tent (Ayu et al., 2020), it was never tested for the prediction

of complex traits. Herein, our primary hypothesis is that NIR

spectra can be used to capture the genetic covariance between

individuals and, similarly to the use of the genomic best linear

unbiased prediction (GBLUP) method (VanRaden, 2008), it

could be implemented as a cost-efficient alternative for yield

prediction in coffee. Examples of success have been recently

proposed in multiple crops, including soybean (Zhu et al.,

2021), wheat (Krause et al., 2019; Rincent et al., 2018), maize

(Lane et al., 2020), and grapevine (Brault et al., 2022).

Considering the importance of using new methods to accel-

erate coffee breeding, in this study we addressed the following

main question: When predicting coffee yield, is the use of

phenomic selection methods an efficient alternative to com-

plement genomic selection methods? Motivated by that, we

used a representative germplasm collection of C. canephora,

evaluated in two different locations over multiple years, with

the following main objectives: (i) compare the information

assessed via genomic and NIR methods, (ii) evaluate the pre-

dictive performance within and across environments using

both methods, and finally (iii) investigate the impact of model

choices for prediction. Altogether, our results draw attention

to how phenomic selection could be integrated into a coffee

breeding program to maximize genetic gains.
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2 MATERIALS AND METHODS

2.1 Plant material and phenotypic analyses

The plant genotypes used in this study are part of the cof-

fee breeding program at the Instituto Capixaba de Pesquisa,

Assistência Técnica e Extensão Rural (Incaper), ES, Brazil.

The institute has the largest germplasm bank of C. canephora
in Brazil. Since 1988, plant accessions from different regions

and origins have been collected and maintained for ex-situ

conservation. In 2016, an important expansion of this collec-

tion was performed, with all plants cloned and installed in two

coffee-growing regions. It includes the experimental farms in

Marilândia (FEM) with latitude of 19,407˚S and longitude of

40,539˚W, and the experimental farm in Bananal do Norte

(FEB), with latitude of 20,750˚S and longitude of 41,228˚W,

as described by M. A. G. Ferrão et al. (2021).

Up to now, this germplasm collection has a total of 606

accessions. On average, in each location, three to five plants

of each of the accessions (genotype) were cloned and planted

into a single plot at a spacing of 3.0 m × 1.20 m. For this

study, we focused only on the yield evaluation performed in

the FEM and FEB locations. Yield was measured in kilograms

after harvesting each plot and computing the ratio between the

total yield (in kg) and the number of plants per plot. For the

FEM location, yield data were collected during four harvest

seasons (2019, 2020, 2021, and 2022), while for the FEB, we

used two harvest seasons (2020 and 2021).

In this study, the term “phenotypic” refers to the target trait

(in this case, yield), while we use the term “phenomics” to

refer to the endophenotyped collected via NIR. For the phe-

notypic analyses, we relied on spatial information to estimate

the empirical best linear unbiased estimates (BLUEs) from

two classes of models: across-location and within-location.

For the across-location models, information on rows and

columns were recorded, and modeled jointly to the season

effect, per location, using the following linear model:

𝐲 = 1′ 𝝁 + 𝐗𝒈𝐠 + 𝐗𝒔𝝉 + 𝜺

where y is a vector of yield data (kg) collected across multiple

harvest seasons and genotypes; 𝝁 is a vector of overall mean;

𝐠 is a vector of fixed genetic effects, with a design matrix

of 𝐗𝐠; 𝝉 is a vector of fixed effects associated with harvest

year, with the design matrix 𝐗𝑠, and ϵ is the vector of random

residual effects, where 𝝐 ∼ MVN(0, 𝑅𝜎2
𝑟
). The residual was

modeled assuming a first-order separable (separate functions

for row and column) autoregressive (AR) structure, account-

ing for a direct product (AR1 × AR1), as described by Isik

et al. (2017). The following correlation matrix was fitted for

the residual term: 𝑹 = 𝚺𝒄 ⊗ Σ𝑟, where the column and row

local spatial correlation matrices were taken as autoregressive

models of order 1 (AR1) with spatial correlation parameters

row and column directions, respectively. More details on the

importance of using spatial models, for analyses of individual

plants, and in the genomic prediction context are discussed by

Elias et al. (2018).

For the so-called within-location analyses, a similar mixed

model was considered, with the BLUEs estimated per sea-

son across both locations. To this end, the season effect

was removed from the aforementioned phenotypic model,

and a model only accounting for the genotypic and spatial

information (row and columns) was considered. Across- and

within-location models were fitted using the ASReml-R pack-

age (Butler et al., 2009). The BLUEs for the genotype effects

were used in the subsequent prediction analyses.

2.2 NIR data

NIR data were obtained from coffee green beans harvested

in FEB in 2022. From the entire germplasm collection, NIR

data were collected from 263 accessions that showed similar

maturation patterns. The choice for FEB location was primar-

ily made because of the better postharvest practices presented

in this location. Importantly, the logistics underlying posthar-

vest practices in coffee are laborious. In such a diverse coffee

population, it requires multiple steps, that include tracking

the right time for harvesting genotypes with different matura-

tion times, selective picking, drying the beans, grinding, and

collecting the NIR information. To this end, from each geno-

type, a sample of ∼2 kg of ripened fruits was selected, picked,

dried, and depulped (getting rid of the skin and mucilage) to

obtain the coffee green beans. Each sample was ground until

it formed a fine powder.

For NIR collection, three technical replicate reflectance

data points were collected within the range of 906–1676 nm

with a 6 nm step, consisting of ∼125 wavelength data points.

Spectra data were obtained using the VIAVI MicroNIR

OnSite-W device along with its corresponding software. To

ensure data quality, we conducted checks for outliers and

applied pretreatment techniques using the protocols described

in the waves R package (Hershberger et al., 2021). The spectra

data were normalized (centered and scaled), and their second

derivative was computed using a Savitzky–Golay filter with a

window size of 15 data points, as implemented in the waves

R package (Hershberger et al., 2021).

From the transformed NIR data, we estimated variance

components for genotypes, permanent environment, and

residuals at each wavelength to check heritability and repeata-

bility values. Briefly, we use a repeatability model that is

commonly applied in animal science and fruit breeding liter-

ature (Hernandez et al., 2020) when technical replications are

collected from the same individual (in this case, NIR informa-

tion collected multiple times from the same genotype). The

following linear mixed model was used: 𝐲𝑖 = 𝐗𝜷 +𝒁𝐮 +
𝐖𝐩 + 𝐞, here y is the vector of NIR data for the spectrum

i; β is the vector of fixed effect; 𝐮 is a vector of random
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genetic effects as 𝐮 ∼ 𝑁(0, 𝐼σ2𝐮)), where σ2𝐮 is the genetic

variance component; p is the vector of permanent environ-

mental effect and non-additive genetic that is independently

distributed with means of zero and variance σ2𝐩𝐞; and e is

the vector of residual effect following a normal distribution

with zero mean and (co)variance matrix 𝜎2
𝑒
. X, Z, and W are

incidence matrices relating the fixed and random effects to

measurements in vector y.

2.3 Genotypic data

The 263 selected accessions from the germplasm collec-

tion were genotyped by the LGC/RAPiD Genomics company

using the sequencing capture methodology. Sequencing was

performed using an Illumina HiSeq2000 platform, consider-

ing 100-cycle paired-end runs. Raw reads were filtered by

quality and trimmed, while the filtered reads were mapped

against the C. canephora genome assembly (Denoeud et al.,

2014) using the BWA v.0.7.17 software (Li & Durbin, 2009).

Single-nucleotide polymorphisms (SNPs) were called using

FREEBAYES v.1.0.1 (Garrison & Marth, 2012), targeting

10,000 probe regions designed for the sequence capture

approach, as described by Resende (2016) and Alkimim et al.

(2018). Loci were also filtered by applying the following cri-

teria: minimum mapping quality of 30; only biallelic locus;

maximum missing data of 40%; minor allele frequency of

1%; and minimum and maximum mean depth of 3 and 200,

respectively. The remaining missing genotypes were imputed

using the default parameters from BEAGLE (Browning &

Browning, 2007). In total, 149,970 raw SNPs were originally

reported. After following the quality-control steps, a total of

52,456 markers were retained.

2.4 Phenomic selection models

To implement phenomic selection using NIR as predictors,

we tested different models. To this end, we used the pretreated

spectra data, and all NIR matrices were centered and scaled

over the samples. Here, we grouped the phenomic selection

models into three main categories: mixed models, Bayesian

approaches, and machine learning.

For mixed models, genetic values were predicted using the

BLUP and restricted maximum likelihood approach to esti-

mate variance components, as follows: 𝐲 = 1′ 𝝁 + 𝐙𝐮 + 𝐞;
where y is the vector of the measured phenotype (yield); μ
is the overall vector mean; Z is an incidence matrix linking

observations in the vector y to their respective genetic values;

𝐮 is a random genetic value vector, where 𝐮 ∼ MVN(0,𝐊σ2
𝑘
).

𝐊 is the phenomic relationship matrix constructed from the

transformed near-infrared spectra, and 𝜎2
𝑘

is the phenomic

variance. 𝐊 was computed as
𝐒𝐒′
𝑛𝑤

, where S is the centered and

scaled matrix for each wavelength and 𝑛𝑤 is the number of

wavelengths reflectance. A mixed model was implemented in

the ASReml-R (Butler et al., 2009).

For the Bayesian approaches, we tested four regression

methods with different assumptions (and distributions) for the

regression parameter (effect of wavelength reflectance). For

Bayesian ridge regression, we assumed that predictors follow

a normal distribution, described as 𝛽𝑗|𝜎2𝛽 ∼ 𝑁(0, 𝜎2
𝛽
), where

𝜎2
𝛽

is a common variance associated with each wave effect.

The second approach is referred to in the genomic selection

literature as BayesA, and the regression parameter 𝛽𝑗 also fol-

lows a normal distribution, described as 𝛽𝑗|𝜎2𝛽𝑗 ∼ 𝑁(0, 𝜎2
𝛽𝑗
),

where 𝜎2
𝛽𝑗

represents the variance associated with each effect.

In the so-called BayesB, the regression parameter 𝛽𝑗 was

modeled as a mixture distribution, 𝛽𝑗|𝜎2𝛽𝑗 ∼ 𝜋𝑁(0, 𝜎2
𝛽𝑗
) +

(1 − 𝜋)DG(0), where 𝜋 represents the proportion of non-null

effects and follows a beta distribution and DG(0) is a degen-

erate distribution centered at zero. Finally, in the Bayesian

LASSO (BL), the 𝛽𝑗 follows a double-exponential distri-

bution, which can be expressed as 𝛽𝑗|𝜎2𝛽𝑗 , 𝜆 ∼ DE(0,

√
𝜎2
𝛽𝑗

𝜆
),

where 𝜆2 follows a gamma distribution. The variance terms,

𝜎2
𝛽

and 𝜎2
𝛽𝑗

, follow a scaled-inverse χ2 density. More details

about the Bayesian methods here reported are discussed by

Pérez and de los Campos (2014). All Bayesian models were

implemented in the BLGR R package (Perez & de los Cam-

pos, 2014) with a total of 120,000 iterations, including a

burn-in period of 20,000 iterations and thinning every five

iterations.

We also tested some methods described in machine-

learning literature (James et al., 2013). We also explored

nonlinear models, such as random forest (RF)—a method

based on tree algorithms—and support vector machine radial

(SVMR), a supervised learning algorithm that aims to find

a regression hyperplane to minimize the distance from the

sample point farthest from the hyperplane using a radial basis

function as the kernel function. Specifically, RF was imple-

mented using the randomForest R package (Liaw & Wiener,

2002), while the SVMR was implemented using the e1071 R

package (Dimitriadou et al., 2009). The use of partial least

square regression (PLSR) relies on a dimension-reduction

approach. We used the pls R package (Mevik & Wehrens,

2015) for fitting the PLSR models.

2.5 Genomic and multi-omic predictions

For genomic prediction, we relied on GBLUP analyses to

compute genomic estimated breeding values (VanRaden,

2008). Briefly, we used the same mixed model described

for the NIR information, but the relationship information

among individuals was computed using molecular marker
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information (the G matrix). The G matrix was estimated

in the AGHmatrix R package (Amadeu et al., 2016, 2023).

A mixed model was implemented in the ASReml-R (Butler

et al., 2009).

We also expanded the mixed model analyses to incorporate

phenomic and genomic information into the same framework.

To this end, we used a multi-kernel model where we included

one random effect associated with genomic information and a

separated random effect associated with phenomic as follows:

𝐲 = 1′μ + 𝐙𝑔𝑢 + 𝐙𝑣𝑣 + 𝒆, where 𝐲 is the vector of the mea-

sured phenotypes (yield); μ is the overall mean; 𝐙g and 𝐙𝒗 are

incidence matrices linking observations in the vector y to their

respective genomic and phenomic values, respectively; 𝑢 and

𝑣 are both independent random effects, normally distributed

and with variance and covariance terms defined as kernel

matrices constructed using genomic and NIR information.

The G matrix was estimated in the AGHmatrix R pack-

age (Amadeu et al., 2016, 2023) as: 𝐆 = 𝐌𝑀 ′∕2
∑

𝑝𝑘(1 −
𝑝𝑘), where M is the centered and scaled molecular marker

matrix and 𝑝𝑘 is the allele frequency (VanRaden, 2008). A

multi-kernel mixed model was implemented in the ASReml-

R (Butler et al., 2009). Heritability was computed as the

ratio between the genetic and the residual term, with genetic

components estimated via genomic models. We reported the

proportion of the phenotypic variation (PVE) explained by

phenomic selection models as the ratio between the phenomic

and the residual term.

2.6 Cross-validation scheme

The predictive performance was computed as the Pear-

son’s correlation between the predicted and the adjusted

mean values. Herein, we tested predictions within- and

across-locations. For within-location predictions, a 10-fold

cross-validation scheme repeated five times was used. For

validation across-locations, in each site (FEB and FEM), we

first corrected the yield values accounting for the year and

spatial variations. With the empirical BLUEs computed; we

calibrated phenomic and genomic models in one location and

predicted the other.

3 RESULTS

3.1 Phenotypic variation

The germplasm panel underlying this study consisted of 606

C. canephora accessions evaluated in two locations (FEB

and FEM) in different harvest seasons. For yield produc-

tion, we could first notice different patterns of phenotypic

correlations across locations and years (Figure 1a). Within-

locations, low to moderate correlation values were reported

between 2020 and 2021 (0.32 in FEB) and 2021 and 2022

(0.31 in FEM). Interestingly, field data collected in 2019 in

FEM were more similar to the patterns observed in the FEB

location than for the other years collected in FEM. Mean yield

values were also highly different across the environments,

with the highest value reported for FEB_2021 (on average,

5.1 kg per plant) and the lowest for FEM_2020 (on aver-

age, 1.1 kg per plant). Altogether, these results shed light on

the relevance of spatial and temporal variation in coffee (i.e.,

genotype-by-environment interaction). The importance of

genotype-by-environment interactions was already discussed

by other studies that indicated different genetic variances and

ranking changes for genotypes evaluated in this same macro-

region (Adunola et al., 2023; L. F. V. Ferrão et al., 2017; L. F.

V. Ferrão, et al., 2019). Adjusted mean values (BLUEs) were

slightly higher for FEB when compared to the FEM location

(Figure 1b).

3.2 NIR information

From the green beans, multiple NIR measurements were

collected individually per genotype. The transformed NIR

spectra covered the range from 900 to 1700 nm and included

125 wavelengths (Figure 2a). We carried out correlation anal-

yses between the wavelength spectrum and noticed small

correlation clusters (Figure 2b), with moderate Pearson’s

correlation values (Figure 2b). This ultimately affected the

variance components, which showed a similar projection

across all the predictors (Figure 2c). Moderate-to-high her-

itability values were computed for all wavelengths, with a

low variation reported for the permanent environment effect,

which indicates good repeatability between the technical rep-

etitions collected in this study. We finally correlated each

wavelength and the BLUEs estimated in the FEM and FEB

locations (Figure 2d and Figure S1). The results reveal

correlation coefficients ranging from −0.2 to 0.2, thus with-

out a single predictor explaining a large portion of the

phenotypic correlation. While fairly small, these correlations

were consistent across locations, underlining some stability

across locations of the relationship between yield and NIR.

3.3 Genomic information

Molecular markers are spanning the entire genome with very

few gaps (Figure 3a). Using NIR and genomic information,

we analyzed the population structure in the coffee germplasm

(Figure 3b). Using genome-wide marker data, we clearly sep-

arated the accessions into three main groups. These clusters

refer to the two botanical groups (“Robusta” and “Conilon”)

presented in C. canephora species; while genotypes classi-

fied as “Hybrids” are derived from crosses between both
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6 of 14 ADUNOLA ET AL.

F I G U R E 1 (a) The Pearson’s correlation for yield prediction measured in two different locations (experimental farm in Bananal do Norte

[FEB] and experimental farms in Marilândia [FEM]) across multiple harvest seasons (2019, 2020, 2021, and 2022). (b) Distribution of the empirical

best linear unbiased estimators (BLUEs) for each location (FEB and FEM) after correcting for harvest and spatial effects.

F I G U R E 2 (a) Original near-infrared spectroscopy (NIR) profile of coffee green beans; the black line shows the average value, and the gray

color represents the standard deviation of the population of individuals. (b) Correlation among 125 pre-treated wavelengths collected in coffee green

beans. (c) Proportion of the phenotypic variance explained by the genetic term, permanent environment (as a metric of repeatability of the trait), and

residual effects computer per pre-treated NIR spectrum. The blue part (permanent environment) is minimal (i.e., low values). (d) The Pearson’s

correlation (and their distribution) between coffee yield and pre-treated NIR spectrum over the two different locations (experimental farms in

Marilândia [FEM] and experimental farm in Bananal do Norte [FEB]).
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ADUNOLA ET AL. 7 of 14

F I G U R E 3 (a) Distribution of single-nucleotide polymorphisms (SNPs) across the 11 chromosomes of Coffea canephora. Numbers close to

each chromosome indicate the total number of SNPs. (b) Principal component analyses (PCA) of 254 coffee accessions evaluated via near-infrared

spectroscopy (NIR) and genome-wide marker information. Both PCAs were created after using NIR and SNP information to compute the

relationship between individuals in the germplasm collection.

groups. Importantly, genomic classification matches the phe-

notypic and botanical coffee descriptors, already reported in

this germplasm collection (M. A. G. Ferrão et al., 2021).

In contrast, the NIR information was not able to detect this

expected population structure. Even with the first principal

components explaining more of the variation, only one cloud

with a large overlap between the three groups was reported.

3.4 Prediction models for phenomic
selection

For phenomic selection, 125 NIR wavelengths were used as

independent variables to predict coffee yield. Before testing it

for yield prediction within and across environments, we first

tested different statistical methods to predict the BLUEs com-

puted in the FEM location. The choice for predicting the FEM

location was motivated by (i) the larger number of harvest sea-

sons reported in this site and (ii) to reduce potential prediction

biases created by within-location prediction, since the NIR

data were collected in the FEB location. To test it, we fitted

eight models, including linear and nonlinear approaches, in

their mixed model, machine learning, and Bayesian versions

(Table 1).

Overall, models presented a similar predictive performance

with accuracy ranging from 0.32 to 0.38. The only excep-

tion was the SVM linear method, which presented a slightly

lower predictive performance (0.28). PLSR showed the best

predictive abilities, followed by the SVMR model (0.38 and

0.36, respectively). The use of Bayesian models, with differ-

ent assumptions, did not result in better predictive accuracies.

Traditional mixed models (BLUPs) showed reasonable results

(0.32) when compared to other methods that are more compu-

tationally intensive. We then used BLUP analyses for genomic

and phenomic prediction.

3.5 Comparing genomic and phenomic
models for within and across-environment
predictions

Prior to any predictive analyses, we quantified the heritability

and PVE values associated with the yield trait per environ-

ment (Figure 4a). Using phenomics and genomics, extremely
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8 of 14 ADUNOLA ET AL.

T A B L E 1 Comparing eight phenomic models to predict coffee yield using near-infrared spectroscopy (NIR). Prediction accuracy was measured

as the Pearson’s correlation between predicted and best linear unbiased estimator (BLUEs) computed in the experimental farms in Marilândia (FEM)

location after corrected by spatial and harvest season effects. The prediction error was measured using the root square mean square error (RMSE).

Method Assumption Class Accuracy RMSE
BLUP Linear Mixed model 0.32 2.99

BayesA Linear Bayesian 0.33 2.12

BayesB Linear Bayesian 0.32 0.88

LASSO Linear Bayesian 0.32 0.89

PLSR Linear Linear model 0.38 0.89

Random forest Nonlinear Machine learning 0.31 0.91

SVM linear Linear Machine learning 0.28 1.02

Support vector machine radial Nonlinear Machine learning 0.36 0.87

Abbreviations: BLUP, best linear unbiased prediction; LASSO, least absolute shrinkage and selection operator; PLSR, partial least square regression; SVM, support vector

machine.

F I G U R E 4 (a) Genomic heritability (in red) computed across different locations (experimental farms in Bananal do Norte [FEB] and

Marilandia [FEM]) and different harvest seasons (2019, 2020, 2021, and 2022). Values were compared to the percentage of variance explained

(PVE) computed using NIR information (in green). (b) Predictive ability computed in a k-fold cross-validation scheme, as the Pearson’s correlation

between phenotypes and genomic/phenomic prediction across different environments. (c) Predictive ability was measured in percentage, when

genomic and phenomic models were trained in a location to predict other. (d) The Pearson’s correlation between breeding values computed via

phenomics and genomics in two locations (FEB and FEM). Values in red indicate the agreement between both methods when selecting the best and

worst 10 genotypes in the population.

low values were reported for the 2019 season, which is mostly

associated with the data quality collected in a year of extreme

drought. At the genomic level, low to moderate heritability

values were reported across the environments, a fact that was

expected given the complex genetic architecture associated

with yield data. For the NIR data, larger heritability values

were reported in the FEB location, where the spectrum data

were collected.

For prediction analyses, the same set of individuals was

used for genomic and phenomic analyses. Thus, we first inves-

tigated within-location prediction. Results mirrored the heri-

tability values, and, in general, the use of phenomic analyses
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showed better results than genomic selection (Figure 4b).

When phenomics and genomic information were modeled

together, higher prediction accuracies were reported in mul-

tiple scenarios (FEB_2021, FEM_2020, FEM_2021, and

FEM_2022). For across-location predictions, genomic and

phenomic selections showed good (and similar) predictive

performances (Figure 4c).

Finally, we used the BLUEs estimated in each location

(FEB and FEM) to compute the genomic breeding values and

the phenomic values (Figure 4c). We compared both results

using the Pearson’s correlation. Overall, both vectors showed

positive and large correlation values (0.65 and 0.63 for FEB

and FEM locations, respectively). As part of the coffee breed-

ing program, breeders usually care about selecting the best

individuals to be either used as parents or cloned. Mod-

erate agreement between selections performed via genomic

and NIR information was reported in both locations when

the top 10 individuals were selected per environment (40%

and 50% of agreement in the FEB and FEM locations,

respectively).

4 DISCUSSION

Genomic selection has become a routine tool to assist selec-

tion in plant breeding (Hickey et al., 2017). While promising

predictive abilities are reported in multiple crops, its practical

implementation in coffee has encountered some challenges.

With most of the coffee breeding programs supported by the

public sector in developing countries, the costs and logistics

associated with high-throughput genotyping are still key bar-

riers faced by breeders (Mbebi et al., 2022). In this research,

we sought that phenomic selection, guided by NIR informa-

tion, could be an alternative to genomic analyses to predict

yield performance in coffee.

4.1 Why NIR for phenomic selection in
coffee?

Coffee is a perennial species with a long juvenile period

that requires large areas for cultivation. With selections pri-

marily guided by visual and phenotypic assessment, genetic

improvements were revealed to be costly, slow, and labor-

intensive (Ferrão,et al., 2023). The use of phenomic selection

emerges as an alternative to make this process less subjec-

tive, high throughput, and more cost-efficient in the long

term. In a recent study, Mbebi et al. (2022) trained a phe-

nomic model using chlorophyll fluorescence (ChlF) to predict

growth-related traits in C. arabica. The authors reported better

prediction abilities than genomic selection for multiple traits,

a fact that opens new alternatives for coffee breeders.

Herein, for the first time in coffee literature, we relied

on the use of NIR information for predicting yield in C.
canephora. Mainly motivated by a large number of studies

reported in cereals and grains (Cuevas et al., 2019; Lane et al.,

2020; Rincent et al., 2018; Zhu et al., 2021), the motivation

behind our study was to focus on spectra results to build rela-

tionships between individuals and capture some Mendelian

sampling information. Simply stated, it would work analo-

gously with molecular markers in the GBLUP context, where

we expect higher predictive performance than using relation-

ship information derived from recorded pedigree or mass

selection.

From a biological perspective, the underlying question

revolves around what exactly is being measured by NIR. In

the literature, there are some lines of evidence agreeing on

the concept of endophenotypes. Rincent et al. (2018), for

example, defined endophenotype capture by NIR as “differ-

ent molecular layers between the genome and the phenotype,

which permit the integration of interactions and regulatory

networks.” In a recent publication, Zhou et al. (2013) argued

that the biological principle underlying such endophenotypes

is not totally clear. The central benefit is that, for practical

purposes, this question becomes secondary. As far as NIR

can capture relationships and outputs accurate prediction val-

ues, its use in breeding programs can be justified to aid

selection.

For coffee, there are multiple lines of evidence connecting

NIR and chemical information that can shed some light on the

nature of the endophenotypes. With a long history in the cof-

fee literature, NIR has been used as a form of measuring coffee

quality, defining geographical origin, and as a proxy for mea-

suring some complex traits (Ayu et al., 2020; Giraudo et al.,

2019; Mutz et al., 2023). In a food science review, Barbin et al.

(2014) have reported the chemical assignments for some of

the most important NIR bands. Herein, we can speculate that

NIR is mostly capturing differences in alcohol and hydrochlo-

ride contents among green beans while also quantifying

some levels of lipids and carbohydrates. This informa-

tion could partially connect the biological nature between

endophenotypes and the genetic similarity computed in this

study.

4.2 Model comparison for phenomic
prediction: On the relevance of BLUP analyses

When implementing predictive analyses, an important ques-

tion is what statistical method might better predict unobserved

environments (L. F. V. Ferrão et al., 2019). With a large

number of methods proposed in the literature, in general, all

approaches shared the same underlying purpose: it includes

handling highly dimensional data, where the number of
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10 of 14 ADUNOLA ET AL.

variables is larger than the number of observations (de los

Campos et al., 2009).

For phenomic selection in coffee, we used the same model-

ing philosophy described in the genomic selection literature.

In total, we tested eight methods to predict empirical BLUEs

computed in a single environment (FEM location). Most

methods showed good predictive abilities (>0.30). PLSR was

the best with predictive abilities 10% higher than traditional

mixed models. Overall, such a difference in magnitude is not

common in genomic selection studies. Most genomic results

have reported similar predictive accuracies across models

for different traits. In coffee, for example, L. F. V. Ferrão

et al. (2019) reported comparable accuracy for 12 predictive

models, tested for three traits, and evaluated across multi-

ple locations and populations. In sharp contrast, the use of

phenomic models ha presented more variable results when

models are compared. A similar 10% difference in magnitude

was recently reported in soybeans when RF and ridge regres-

sion methods were compared (Zhu et al., 2021). Using ChlF as

predictors, in C. arabica, an impressive difference of 30% in

magnitude was noticed when Bayesian and machine-learning

methods were compared for family prediction (Mbebi et al.,

2022). Altogether, such examples suggest a higher depen-

dency between statistical approach, trait under evaluation, and

environmental conditions.

In this study, we argued in favor of the BLUP-based mod-

els. There are several advantages to this approach. First,

multiple phenomic selection studies have relied on this frame-

work, reporting stable results across different scenarios and

traits (Cuevas et al., 2019; Galán et al., 2020; Krause et al.,

2019; Lane et al., 2020; Rincent et al., 2018). Herein, for

all within-location predictions, we also noticed positive and

large predictive abilities. At the implementation level, the use

of mixed models is also convenient. In addition to a consoli-

dated theory in the plant and animal breeding community, its

extensions toward more complex structures (i.e., multi-kernel

models, inclusion of genotype-by-environment interaction,

and multi-trait analyses) are straightforward.

4.3 High predictive accuracy associated
with phenomic prediction

Our next contribution to this study was to compare genomic

and phenomic prediction models. We first tested both

approaches for predicting six environments. Remarkably, the

use of NIR as predictors showed better results than genomics

in four environments. For predictions across locations, we

also noticed large prediction values (0.38) that suggest good

performance when training models in a location to predict

others, either using genomics or phenomics models. Using

whole-genomic models, similar prediction abilities using

across-location predictions were reported by L. F. V. Ferrão

et al. (2019). Similarly, Adunola et al. (2023) discussed that

stability for yield can be predicted using molecular mark-

ers. For phenomics, relying on across-location predictions

is particularly important when NIR is projected to be col-

lected at the green beans. This is because in coffee, from

fruits to beans, multiple postharvest steps are necessary. It

requires a certain level of organization that includes infras-

tructure, costs, and labor for preparing the samples. Our

results suggest that such logistics could be focused on a single

location since the prediction models are working well across

environments.

For phenomic prediction across environments, an impor-

tant note of caution is eventual biases associated with the

results. In coffee, Posada et al. (2009) have reported that NIR

profiles can be strongly affected by environmental factors.

More recently, Dallinger et al. (2023) have addressed this

topic when comparing phenomics and genomics. The authors

stressed that while genomics provides a static form for predic-

tions, the use of endophenotypes collected in the form of NIR

spectrum might be highly subjected to environmental varia-

tions. Thus, phenomic prediction could introduce a source of

bias in the results by yielding better results toward the envi-

ronment tested. In fact, we noticed large values for the FEB

location, the site where coffee green beans were originally

harvested. We tried to partially address this problem by train-

ing our models in one location to predict the other. Although

we noticed good predictive ability across locations, further

studies on this topic are justified. The use of more contrast-

ing environments and multiple traits are future directions to

understand the impact of phenomic prediction in coffee in the

long term.

4.4 Integrating phenomics and genomics in
the same pipeline

Our final contribution is to project the use of phenomics and

genomics in coffee breeding. In the past years, the use of

genomic-assisted breeding has been argued as a viable alter-

native for the future of the coffee chain (Davis et al., 2021).

In the C. canephora species, exploration of the heterotic

effect from crosses between both botanical groups (Conilon

and Robusta, from the SG1 and SG2 groups, respectively) is

well reported and structured in the form of reciprocal recur-

rent selection design (Leroy et al., 1993; Montagnon et al.,

2008). Recently, Ferrão, et al. (2023) suggested a rethinking

of traditional breeding designs by integrating marker-assisted

selection. However, the underlying question is how phe-

nomics could be incorporated into this framework. Or, do

we still need to use genomics for predicting unobserved

phenotypes?
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ADUNOLA ET AL. 11 of 14

To answer both questions, we first relied on the results

reported in this study. Phenomic prediction yielded solid

results in multiple scenarios. However, the integrated use of

phenomic and genomic information showed the best results

in multiple scenarios. This is a similar context discussed in

other field areas, including recent progress in understanding

fruit flavor attributes (Ferrão, et al., 2023). The use of multi-

omics information has the potential to leverage the prediction

abilities of complex traits and should be considered as an

alternative for future coffee research.

Replacing genomics with phenomics is a more complex

task and requires more reflection. Fundamentally, it is still

unknown at what level additive effects are captured via phe-

nomic models. This makes long-term projections still elusive

at this point. For yield, we reported a moderate agreement

when the top 10 individuals were ranked via genomic and phe-

nomic methods, a fact that might impact parental selection and

the genetic progress. Also relevant, we discussed the biases

created by the endophenotypes. The bias causes overfitting

toward certain environmental conditions, which can also limit

its application in the long term. With those points in mind, we

envision the use of NIR for specific steps in a recurrent selec-

tion breeding program. A classical recurrent selection method

is divided into two main steps: (i) population improvement,

by selecting the best parents to manage the frequency of ben-

eficial alleles over time, and (ii) product development, which

consists of a series of field trials, in which potential candi-

dates are evaluated over environments until selecting a variety

that can become a cultivar. We believe that NIR could have

an important role to play in product development. Therefore,

after defining crosses via genomic information, a larger num-

ber of families (and siblings per family) could be established

in higher density nurseries, and phenomic selection could be

applied to increase the selection intensity and leverage the

genetic gains. A similar line of thought was recently discussed

by Zhu et al. (2021) in soybeans.

Finally, another measure of caution should be taken in the

interpretation of our results, as genomic and phenomic selec-

tion were applied in different coffee tissues. To start with,

for phenomic selection, we relied on NIR collected in the

green beans. The choice of beans was primarily motivated

by the long history of using NIR in coffee for certification

and flavor/chemical prediction. However, collecting data at

this level requires at least one harvest of production to be

measured. This fact makes genomic selection faster since

molecular markers could be obtained from leaves in the early

seedling stages, at greenhouse conditions within a few months

of germination. With genetic gains weighted by breeding

cycle, genomic selection would be two times faster than phe-

nomics, doubling the gains when compared to NIR evaluated

in the green beans. A valid extension of our work is to test

NIR collected in the leaves. Studies in wheat and poplar,

for example, compared different tissues for phenomic predic-

tion and showed similar results (Rincent et al., 2018). Herein,

we justified the use of NIR on green beans because it is a

common practice in the coffee industry for the analyses of

quality, geographical origin, and other chemical attributes of

the beans (Ayu et al., 2020; Barbin et al., 2014; Giraudo et al.,

2019).

5 CONCLUSIONS

Altogether, we have demonstrated that improvements in C.
canephora breeding programs can be accelerated using a com-

bination of phenomic and genomic selection. In summary,

we highlight two main contributions: (i) we emphasize the

large predictive ability for yield when using NIR methods;

(ii) we draw attention to the use of phenomic and genomic

prediction in a recurrent selection breeding program with phe-

nomics associated with product development and genomics

for parental selection. Overall, when compared to traditional

methods applied in coffee breeding programs, we expect that

using multi-omic methods can maximize future genetic gains

and accelerate the development of new cultivars.
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