|
|
 | Acesso ao texto completo restrito à biblioteca da Biblioteca Rui Tendinha. Para informações adicionais entre em contato com biblioteca@incaper.es.gov.br. |
Registro Completo |
Biblioteca(s): |
Biblioteca Rui Tendinha. |
Data corrente: |
17/04/2018 |
Data da última atualização: |
17/04/2018 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
MADRONERO, J.; RODRIGUES, S. P.; ANTUNES, T. F. S.; ABREU, P. M. V.; VENTURA, J. A.; FERNANDES, A. A. R.; FERNANDES, P. M. B. |
Afiliação: |
Johana Madroñero, UFES; Silas P. Rodrigues, UFES; Tathiana F. S. Antunes, UFES; Paolla M. V. Abreu, UFES; Jose Aires Ventura, Incaper; A. Alberto R. Fernandes, UFES; Patricia Machado Bueno Fernandes, UFES. |
Título: |
Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya |
Ano de publicação: |
2018 |
Fonte/Imprenta: |
Plant Cell Reports, p. 1-14, 2018. |
Idioma: |
Português |
Conteúdo: |
Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance. MenosCarica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flow... Mostrar Tudo |
Thesaurus NAL: |
Carica papaya; Defense responses; Papaya meleira virus; Transcriptome Plant'virus interaction. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02422naa a2200241 a 4500 001 1020018 005 2018-04-17 008 2018 bl uuuu u00u1 u #d 100 1 $aMADRONERO, J. 245 $aTranscriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya$h[electronic resource] 260 $c2018 520 $aCarica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance. 650 $aCarica papaya 650 $aDefense responses 650 $aPapaya meleira virus 650 $aTranscriptome Plant'virus interaction 700 1 $aRODRIGUES, S. P. 700 1 $aANTUNES, T. F. S. 700 1 $aABREU, P. M. V. 700 1 $aVENTURA, J. A. 700 1 $aFERNANDES, A. A. R. 700 1 $aFERNANDES, P. M. B. 773 $tPlant Cell Reports, p. 1-14, 2018.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Biblioteca Rui Tendinha (BRT) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
Voltar
|
|
 | Acesso ao texto completo restrito à biblioteca da Biblioteca Rui Tendinha. Para informações adicionais entre em contato com biblioteca@incaper.es.gov.br. |
Registro Completo |
Biblioteca(s): |
Biblioteca Rui Tendinha. |
Data corrente: |
05/07/2020 |
Data da última atualização: |
05/07/2020 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Circulação/Nível: |
A - 1 |
Autoria: |
MAXIMINO, S. C.; DUTRA, J. A. P.; RODRIGUES, R. P.; GONÇALVES, R. de C. R.; MORAIS, P. A. B.; VENTURA, J. A.; SCHUENCK, R. P.; LACERDA JÚNIOR, V.; KITAGAWA, R. R.; BORGES, W. de S. |
Afiliação: |
Sarah C. Maximino; Jessyca Aparecida Paes Dutra; Ricardo Pereira Rodrigues; Rita de Cássia Ribeiro Gonçalves; Pedro Alves Bezerra de Morais; Jose Aires Ventura, Incaper; Ricardo Pinto Schuenck; Valdemar Lacerda Júnior; Rodrigo Rezende Kitagawa; Warley de Souza Borges. |
Título: |
Synthesis of eugenol derivatives and evaluation of their antifungal activity against Fusarium solani f. sp. piperis. |
Ano de publicação: |
2020 |
Fonte/Imprenta: |
Current Pharmaceutical Design, v. 26, p. 1-11, 2020. |
Idioma: |
Inglês |
Conteúdo: |
Background: Fusarium solani f. sp. piperis is a phytopathogen that causes one of the most destructive diseases in black pepper crops, resulting in significant economic and crop production losses. Consequently, the control of this fungal disease is a matter of current and relevant interest in agriculture. Objective: The objective was to synthesize eugenol derivatives with antifungal activity. Methods: In this study, using bimolecular nucleophilic substitution and click chemistry approaches, four new and three known eugenol derivatives were obtained. The eugenol derivatives were characterized and their antifungal and cytotoxic effects were evaluated. Results: Eugenol derivative 4 (2-(4-allyl-2-methoxyphenoxy)-3-chloronaphthalene-1,4-dione) was the most active against F. solani f. sp. piperis and showed acceptable cytotoxicity. Compound 4 was two-fold more effective than tebuconazole in an antifungal assay and presented similar cytotoxicity in macrophages. The in silico study of β-glucosidase suggests a potential interaction of 4 with amino acid residues by a cation-π interaction with residue Arg177 followed by a hydrogen bond with Glu596, indicating an important role in the interactions with 4, justifying the antifungal action of this compound. In addition, the cytotoxicity after metabolism was evaluated as a mimic assay with the S9 fraction in HepG2 cells. Compound 4 demonstrated maintenance of cytotoxicity, showing IC50 values of 11.18 ± 0.5 and 9.04 ± 0.2 μg mL-1 without and with the S9 fraction, respectively. In contrast, eugenol (257.9 ± 0.4 and 133.5 ± 0.8 μg mL-1), tebuconazole (34.94 ± 0.2 and 26.76 ± 0.17 μg mL-1) and especially carbendazim (251.0 ± 0.30 and 34.7 ± 0.10 μg mL-1) showed greater cytotoxicity after hepatic biotransformation. Conclusion: The results suggest that 4 is a potential candidate for use in the design of new and effective compounds that could control this pathogen. MenosBackground: Fusarium solani f. sp. piperis is a phytopathogen that causes one of the most destructive diseases in black pepper crops, resulting in significant economic and crop production losses. Consequently, the control of this fungal disease is a matter of current and relevant interest in agriculture. Objective: The objective was to synthesize eugenol derivatives with antifungal activity. Methods: In this study, using bimolecular nucleophilic substitution and click chemistry approaches, four new and three known eugenol derivatives were obtained. The eugenol derivatives were characterized and their antifungal and cytotoxic effects were evaluated. Results: Eugenol derivative 4 (2-(4-allyl-2-methoxyphenoxy)-3-chloronaphthalene-1,4-dione) was the most active against F. solani f. sp. piperis and showed acceptable cytotoxicity. Compound 4 was two-fold more effective than tebuconazole in an antifungal assay and presented similar cytotoxicity in macrophages. The in silico study of β-glucosidase suggests a potential interaction of 4 with amino acid residues by a cation-π interaction with residue Arg177 followed by a hydrogen bond with Glu596, indicating an important role in the interactions with 4, justifying the antifungal action of this compound. In addition, the cytotoxicity after metabolism was evaluated as a mimic assay with the S9 fraction in HepG2 cells. Compound 4 demonstrated maintenance of cytotoxicity, showing IC50 values of 11.18 ± 0.5 and 9.04 ± 0.2 μg... Mostrar Tudo |
Thesagro: |
Doença de planta; Fungo; Fusarium; Fusarium solani; Pimenta; Pimenta do reino; Pimenta do reino preta. |
Thesaurus NAL: |
Antifungal; Cytotoxicity; Eugenol derivatives; Piper nigrum. |
Categoria do assunto: |
H Saúde e Patologia |
Marc: |
LEADER 03014naa a2200361 a 4500 001 1022236 005 2020-07-05 008 2020 bl uuuu u00u1 u #d 100 1 $aMAXIMINO, S. C. 245 $aSynthesis of eugenol derivatives and evaluation of their antifungal activity against Fusarium solani f. sp. piperis.$h[electronic resource] 260 $c2020 520 $aBackground: Fusarium solani f. sp. piperis is a phytopathogen that causes one of the most destructive diseases in black pepper crops, resulting in significant economic and crop production losses. Consequently, the control of this fungal disease is a matter of current and relevant interest in agriculture. Objective: The objective was to synthesize eugenol derivatives with antifungal activity. Methods: In this study, using bimolecular nucleophilic substitution and click chemistry approaches, four new and three known eugenol derivatives were obtained. The eugenol derivatives were characterized and their antifungal and cytotoxic effects were evaluated. Results: Eugenol derivative 4 (2-(4-allyl-2-methoxyphenoxy)-3-chloronaphthalene-1,4-dione) was the most active against F. solani f. sp. piperis and showed acceptable cytotoxicity. Compound 4 was two-fold more effective than tebuconazole in an antifungal assay and presented similar cytotoxicity in macrophages. The in silico study of β-glucosidase suggests a potential interaction of 4 with amino acid residues by a cation-π interaction with residue Arg177 followed by a hydrogen bond with Glu596, indicating an important role in the interactions with 4, justifying the antifungal action of this compound. In addition, the cytotoxicity after metabolism was evaluated as a mimic assay with the S9 fraction in HepG2 cells. Compound 4 demonstrated maintenance of cytotoxicity, showing IC50 values of 11.18 ± 0.5 and 9.04 ± 0.2 μg mL-1 without and with the S9 fraction, respectively. In contrast, eugenol (257.9 ± 0.4 and 133.5 ± 0.8 μg mL-1), tebuconazole (34.94 ± 0.2 and 26.76 ± 0.17 μg mL-1) and especially carbendazim (251.0 ± 0.30 and 34.7 ± 0.10 μg mL-1) showed greater cytotoxicity after hepatic biotransformation. Conclusion: The results suggest that 4 is a potential candidate for use in the design of new and effective compounds that could control this pathogen. 650 $aAntifungal 650 $aCytotoxicity 650 $aEugenol derivatives 650 $aPiper nigrum 650 $aDoença de planta 650 $aFungo 650 $aFusarium 650 $aFusarium solani 650 $aPimenta 650 $aPimenta do reino 650 $aPimenta do reino preta 700 1 $aDUTRA, J. A. P. 700 1 $aRODRIGUES, R. P. 700 1 $aGONÇALVES, R. de C. R. 700 1 $aMORAIS, P. A. B. 700 1 $aVENTURA, J. A. 700 1 $aSCHUENCK, R. P. 700 1 $aLACERDA JÚNIOR, V. 700 1 $aKITAGAWA, R. R. 700 1 $aBORGES, W. de S. 773 $tCurrent Pharmaceutical Design$gv. 26, p. 1-11, 2020.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Biblioteca Rui Tendinha (BRT) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
Fechar
|
Expressão de busca inválida. Verifique!!! |
|
|