|
|
 | Acesso ao texto completo restrito à biblioteca da Biblioteca Rui Tendinha. Para informações adicionais entre em contato com biblioteca@incaper.es.gov.br. |
Registro Completo |
Biblioteca(s): |
Biblioteca Rui Tendinha. |
Data corrente: |
13/01/2015 |
Data da última atualização: |
13/01/2015 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
PRAXEDES, S. C.; DAMATTA, F. M.; LOUREIRO, M. E.; FERRÃO, M. A. G.; CORDEIRO, A. T. |
Afiliação: |
Sidney C. Praxedes; Fábio M. DaMatta; Marcelo E. Loureiro; Maria Amélia Gava Ferrão, Incaper/Embrapa Café; Antônio T. Cordeiro. |
Título: |
Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. |
Ano de publicação: |
2006 |
Fonte/Imprenta: |
Environmental and Experimental Botany, v. 56, n. 3, p. 263-273, 2006, |
Idioma: |
Inglês |
Conteúdo: |
Four clones of robusta coffee representing drought-tolerant (14 and 120) and drought-sensitive (46 and 109A) genotypes were submitted to a slowly imposed water deficit. Sampling and measurements were performed when predawn leaf water potential (Ψpd) approximately −2.0 and −3.0 MPa was reached. Regardless of the clone evaluated, drought led to sharper decreases in stomatal conductance than in photosynthesis, which was accompanied by significant declines in internal to ambient CO2 concentration ratio. Little or no effect of drought on chlorophyll a fluorescence parameters was observed. Regardless of the stress intensity, starch decreased remarkably. This was not accompanied by significant changes in concentration of soluble sugars, with the exception of clone 120 in which a rise in sucrose and hexose concentrations was found when Ψpd reached −3.0 MPa. At Ψpd = −2.0 MPa, activity of acid invertase increased only in clone 120; at Ψpd = −3.0 MPa, it increased in clones 14, 46 and 120, while activity of sucrose synthase declined, but only in clone 109A. Drought-induced decrease in ADP-glucose pyrophosphorylase activity was found only in clones 14 and 46, irrespective of stress intensity. At Ψpd = −3.0 MPa, maximal extractable and activation state of sucrose-phosphate synthase (SPS) decreased in all clones with the exception of clone 120, in which SPS activity was maintained in parallel to a rising activity of fructose-1,6-bisphosphatase. Changes in SPS activity could neither be explained by the CO2 decrease linked to stomatal closure nor by differences in leaf water status. MenosFour clones of robusta coffee representing drought-tolerant (14 and 120) and drought-sensitive (46 and 109A) genotypes were submitted to a slowly imposed water deficit. Sampling and measurements were performed when predawn leaf water potential (Ψpd) approximately −2.0 and −3.0 MPa was reached. Regardless of the clone evaluated, drought led to sharper decreases in stomatal conductance than in photosynthesis, which was accompanied by significant declines in internal to ambient CO2 concentration ratio. Little or no effect of drought on chlorophyll a fluorescence parameters was observed. Regardless of the stress intensity, starch decreased remarkably. This was not accompanied by significant changes in concentration of soluble sugars, with the exception of clone 120 in which a rise in sucrose and hexose concentrations was found when Ψpd reached −3.0 MPa. At Ψpd = −2.0 MPa, activity of acid invertase increased only in clone 120; at Ψpd = −3.0 MPa, it increased in clones 14, 46 and 120, while activity of sucrose synthase declined, but only in clone 109A. Drought-induced decrease in ADP-glucose pyrophosphorylase activity was found only in clones 14 and 46, irrespective of stress intensity. At Ψpd = −3.0 MPa, maximal extractable and activation state of sucrose-phosphate synthase (SPS) decreased in all clones with the exception of clone 120, in which SPS activity was maintained in parallel to a rising activity of fructose-1,... Mostrar Tudo |
Thesaurus NAL: |
Carbon metabolism; Chlorophyll fluorescence; Coffee; Gas exchange; Sucrose-phosphate synthase; Water deficit. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02453naa a2200241 a 4500 001 1004903 005 2015-01-13 008 2006 bl uuuu u00u1 u #d 100 1 $aPRAXEDES, S. C. 245 $aEffects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves.$h[electronic resource] 260 $c2006 520 $aFour clones of robusta coffee representing drought-tolerant (14 and 120) and drought-sensitive (46 and 109A) genotypes were submitted to a slowly imposed water deficit. Sampling and measurements were performed when predawn leaf water potential (Ψpd) approximately −2.0 and −3.0 MPa was reached. Regardless of the clone evaluated, drought led to sharper decreases in stomatal conductance than in photosynthesis, which was accompanied by significant declines in internal to ambient CO2 concentration ratio. Little or no effect of drought on chlorophyll a fluorescence parameters was observed. Regardless of the stress intensity, starch decreased remarkably. This was not accompanied by significant changes in concentration of soluble sugars, with the exception of clone 120 in which a rise in sucrose and hexose concentrations was found when Ψpd reached −3.0 MPa. At Ψpd = −2.0 MPa, activity of acid invertase increased only in clone 120; at Ψpd = −3.0 MPa, it increased in clones 14, 46 and 120, while activity of sucrose synthase declined, but only in clone 109A. Drought-induced decrease in ADP-glucose pyrophosphorylase activity was found only in clones 14 and 46, irrespective of stress intensity. At Ψpd = −3.0 MPa, maximal extractable and activation state of sucrose-phosphate synthase (SPS) decreased in all clones with the exception of clone 120, in which SPS activity was maintained in parallel to a rising activity of fructose-1,6-bisphosphatase. Changes in SPS activity could neither be explained by the CO2 decrease linked to stomatal closure nor by differences in leaf water status. 650 $aCarbon metabolism 650 $aChlorophyll fluorescence 650 $aCoffee 650 $aGas exchange 650 $aSucrose-phosphate synthase 650 $aWater deficit 700 1 $aDAMATTA, F. M. 700 1 $aLOUREIRO, M. E. 700 1 $aFERRÃO, M. A. G. 700 1 $aCORDEIRO, A. T. 773 $tEnvironmental and Experimental Botany$gv. 56, n. 3, p. 263-273, 2006
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Biblioteca Rui Tendinha (BRT) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
Voltar
|
|
 | Acesso ao texto completo restrito à biblioteca da Biblioteca Rui Tendinha. Para informações adicionais entre em contato com biblioteca@incaper.es.gov.br. |
Registro Completo |
Biblioteca(s): |
Biblioteca Rui Tendinha. |
Data corrente: |
12/08/2019 |
Data da última atualização: |
12/08/2019 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Circulação/Nível: |
A - 2 |
Autoria: |
DE FARIAS VIÉGAS AGUIJE, G. M.; ZORZAL, P. B.; BUSS, D. S.; VENTURA, J. A.; FERNANDES, P. M. B.; FERNANDES, A. A. R. |
Afiliação: |
Glória Maria de Farias Viégas Aquije, UFES; Poliana Belisário Zorzal, UFES; David Shaun Buss, UFES; Jose Aires Ventura, Incaper; Patricia Machado Bueno Fernandes, UFES; Antonio Alberto Ribeiro Fernandes, UFES. |
Título: |
Cell wall alterations in the leaves of fusariosis-resistant and susceptible pineapple cultivars. |
Ano de publicação: |
2010 |
Fonte/Imprenta: |
Plant Cell Reports, v. 29, n. 10, p. 1109-1117, 2010. |
Idioma: |
Inglês |
Conteúdo: |
Fusariosis, caused by the fungus Fusarium subglutinans f. sp. ananas (Syn. F. guttiforme), is one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). Identification of plant cell responses to pathogens is important in understanding the plant?pathogen relationship and establishing strategies to improve and select resistant cultivars. Studies of the structural properties and phenolic content of cell walls in resistant (Vitoria) and susceptible (Perola) pineapple cultivars, related to resistance to the fungus, were performed. The non-chlorophyll base of physiologically mature leaves was inoculated with a conidia suspension. Analyses were performed post-inoculation by light, atomic force, scanning and transmission electron microscopy, and measurement of cell wall-bound phenolic compounds. Non-inoculated leaves were used as controls to define the constitutive tissue characteristics. Analyses indicated that morphological differences, such as cell wall thickness, cicatrization process and lignification, were related to resistance to the pathogen. Atomic force microscopy indicated a considerable difference in the mechanical properties of the resistant and susceptible cultivars, with more structural integrity, associated with higher levels of cell wall-bound phenolics, found in the resistant cultivar. p-Coumaric and ferulic acids were shown to be the major phenolics bound to the cell walls and were found in higher amounts in the resistant cultivar. Leaves of the resistant cultivar had reduced fungal penetration and a faster and more effective cicatrization response compared to the susceptible cultivar. MenosFusariosis, caused by the fungus Fusarium subglutinans f. sp. ananas (Syn. F. guttiforme), is one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). Identification of plant cell responses to pathogens is important in understanding the plant?pathogen relationship and establishing strategies to improve and select resistant cultivars. Studies of the structural properties and phenolic content of cell walls in resistant (Vitoria) and susceptible (Perola) pineapple cultivars, related to resistance to the fungus, were performed. The non-chlorophyll base of physiologically mature leaves was inoculated with a conidia suspension. Analyses were performed post-inoculation by light, atomic force, scanning and transmission electron microscopy, and measurement of cell wall-bound phenolic compounds. Non-inoculated leaves were used as controls to define the constitutive tissue characteristics. Analyses indicated that morphological differences, such as cell wall thickness, cicatrization process and lignification, were related to resistance to the pathogen. Atomic force microscopy indicated a considerable difference in the mechanical properties of the resistant and susceptible cultivars, with more structural integrity, associated with higher levels of cell wall-bound phenolics, found in the resistant cultivar. p-Coumaric and ferulic acids were shown to be the major phenolics bound to the cell walls and were found in higher amounts in the resistant cultivar. Leaves of... Mostrar Tudo |
Palavras-Chave: |
Abacaxi; Fusariose; Variedade Perola; Variedade Vitoria. |
Thesaurus NAL: |
Ananas comosus; Disease; Fungus; Fusarium subglutinans; Parasite interaction; Pineapple; Resistant cultivar. |
Categoria do assunto: |
H Saúde e Patologia |
Marc: |
LEADER 02552naa a2200313 a 4500 001 1021540 005 2019-08-12 008 2010 bl uuuu u00u1 u #d 100 1 $aDE FARIAS VIÉGAS AGUIJE, G. M. 245 $aCell wall alterations in the leaves of fusariosis-resistant and susceptible pineapple cultivars.$h[electronic resource] 260 $c2010 520 $aFusariosis, caused by the fungus Fusarium subglutinans f. sp. ananas (Syn. F. guttiforme), is one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). Identification of plant cell responses to pathogens is important in understanding the plant?pathogen relationship and establishing strategies to improve and select resistant cultivars. Studies of the structural properties and phenolic content of cell walls in resistant (Vitoria) and susceptible (Perola) pineapple cultivars, related to resistance to the fungus, were performed. The non-chlorophyll base of physiologically mature leaves was inoculated with a conidia suspension. Analyses were performed post-inoculation by light, atomic force, scanning and transmission electron microscopy, and measurement of cell wall-bound phenolic compounds. Non-inoculated leaves were used as controls to define the constitutive tissue characteristics. Analyses indicated that morphological differences, such as cell wall thickness, cicatrization process and lignification, were related to resistance to the pathogen. Atomic force microscopy indicated a considerable difference in the mechanical properties of the resistant and susceptible cultivars, with more structural integrity, associated with higher levels of cell wall-bound phenolics, found in the resistant cultivar. p-Coumaric and ferulic acids were shown to be the major phenolics bound to the cell walls and were found in higher amounts in the resistant cultivar. Leaves of the resistant cultivar had reduced fungal penetration and a faster and more effective cicatrization response compared to the susceptible cultivar. 650 $aAnanas comosus 650 $aDisease 650 $aFungus 650 $aFusarium subglutinans 650 $aParasite interaction 650 $aPineapple 650 $aResistant cultivar 653 $aAbacaxi 653 $aFusariose 653 $aVariedade Perola 653 $aVariedade Vitoria 700 1 $aZORZAL, P. B. 700 1 $aBUSS, D. S. 700 1 $aVENTURA, J. A. 700 1 $aFERNANDES, P. M. B. 700 1 $aFERNANDES, A. A. R. 773 $tPlant Cell Reports$gv. 29, n. 10, p. 1109-1117, 2010.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Biblioteca Rui Tendinha (BRT) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
Fechar
|
Expressão de busca inválida. Verifique!!! |
|
|