|
|
 | Acesso ao texto completo restrito à biblioteca da Biblioteca Rui Tendinha. Para informações adicionais entre em contato com biblioteca@incaper.es.gov.br. |
Registro Completo |
Biblioteca(s): |
Biblioteca Rui Tendinha. |
Data corrente: |
06/07/2020 |
Data da última atualização: |
06/07/2020 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
MOURA, R. D.; CASTRO, L. A. M. de; CULIK, M. P.; FERNANDES, A. A. R.; FERNANDES, P. M. B.; VENTURA, J. A. |
Afiliação: |
Raíssa Debacker Moura; Luiza Adami Monteiro de Castro; Mark Paul Culik, CNPq/Incaper; Antônio Alberto Ribeiro Fernandes; Patricia Machado Bueno Fernandes; Jose Aires Ventura, Incaper. |
Título: |
Culture medium for improved production of conidia for identification and systematic studies of Fusarium pathogens. |
Ano de publicação: |
2020 |
Fonte/Imprenta: |
Journal of Microbiological Methods, v. 173, June 2020. |
DOI: |
10.1016/j.mimet.2020.105915 |
Idioma: |
Inglês |
Conteúdo: |
Fusarium guttiforme and Fusarium ananatum are the etiological agents of fusariosis and fruitlet core rot in pineapple, espectively, producing mycotoxins that are harmful to the health of consumers. These two fungi are morphologically similar and difficulty in obtaining macroconidia of the species limits their identification. Different types of media are available for the culture of these pathogens, but not all of them favor F. ananatum
and F. guttiforme macroconidia production. Therefore, the objective of this study was to develop a simple culture medium to improve rapid macro- and microconidia formation in both F. guttiforme and F. ananatum to facilitate taxonomic, pathogenicity and mycotoxin studies. In vitro analysis showed that basal medium with carboxymethyl cellulose (CMC) was better than other media tested with the highest macroconidia production at 7 days of incubation. The highest production of microconidia was with synthetic nutrient medium (SN) at 7 days. F. ananatum produced a relatively high number of microconidia with one septum in comparison to F. guttiforme when cultured in CMC, which suggests an additional character useful for Fusarium taxonomy. CMC medium may serve as an improved alternative to culture media currently used in Fusarium research and contribute to further knowledge of the taxonomy and mycotoxins of Fusarium species. |
Palavras-Chave: |
Abacaxi. |
Thesagro: |
Fusariose; Fusarium; Patogenicidade; Taxonomia. |
Thesaurus NAL: |
Carboxymethyl cellulose; Sporulation; Taxonomy. |
Categoria do assunto: |
H Saúde e Patologia |
Marc: |
LEADER 02225naa a2200289 a 4500 001 1022238 005 2020-07-06 008 2020 bl uuuu u00u1 u #d 024 7 $a10.1016/j.mimet.2020.105915$2DOI 100 1 $aMOURA, R. D. 245 $aCulture medium for improved production of conidia for identification and systematic studies of Fusarium pathogens.$h[electronic resource] 260 $c2020 520 $aFusarium guttiforme and Fusarium ananatum are the etiological agents of fusariosis and fruitlet core rot in pineapple, espectively, producing mycotoxins that are harmful to the health of consumers. These two fungi are morphologically similar and difficulty in obtaining macroconidia of the species limits their identification. Different types of media are available for the culture of these pathogens, but not all of them favor F. ananatum and F. guttiforme macroconidia production. Therefore, the objective of this study was to develop a simple culture medium to improve rapid macro- and microconidia formation in both F. guttiforme and F. ananatum to facilitate taxonomic, pathogenicity and mycotoxin studies. In vitro analysis showed that basal medium with carboxymethyl cellulose (CMC) was better than other media tested with the highest macroconidia production at 7 days of incubation. The highest production of microconidia was with synthetic nutrient medium (SN) at 7 days. F. ananatum produced a relatively high number of microconidia with one septum in comparison to F. guttiforme when cultured in CMC, which suggests an additional character useful for Fusarium taxonomy. CMC medium may serve as an improved alternative to culture media currently used in Fusarium research and contribute to further knowledge of the taxonomy and mycotoxins of Fusarium species. 650 $aCarboxymethyl cellulose 650 $aSporulation 650 $aTaxonomy 650 $aFusariose 650 $aFusarium 650 $aPatogenicidade 650 $aTaxonomia 653 $aAbacaxi 700 1 $aCASTRO, L. A. M. de 700 1 $aCULIK, M. P. 700 1 $aFERNANDES, A. A. R. 700 1 $aFERNANDES, P. M. B. 700 1 $aVENTURA, J. A. 773 $tJournal of Microbiological Methods$gv. 173, June 2020.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Biblioteca Rui Tendinha (BRT) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
Voltar
|
|
 | Acesso ao texto completo restrito à biblioteca da Biblioteca Rui Tendinha. Para informações adicionais entre em contato com biblioteca@incaper.es.gov.br. |
Registro Completo |
Biblioteca(s): |
Biblioteca Rui Tendinha. |
Data corrente: |
17/04/2018 |
Data da última atualização: |
17/04/2018 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Circulação/Nível: |
A - 1 |
Autoria: |
MADRONERO, J.; RODRIGUES, S. P.; ANTUNES, T. F. S.; ABREU, P. M. V.; VENTURA, J. A.; FERNANDES, A. A. R.; FERNANDES, P. M. B. |
Afiliação: |
Johana Madroñero, UFES; Silas P. Rodrigues, UFES; Tathiana F. S. Antunes, UFES; Paolla M. V. Abreu, UFES; Jose Aires Ventura, Incaper; A. Alberto R. Fernandes, UFES; Patricia Machado Bueno Fernandes, UFES. |
Título: |
Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya |
Ano de publicação: |
2018 |
Fonte/Imprenta: |
Plant Cell Reports, p. 1-14, 2018. |
Idioma: |
Português |
Conteúdo: |
Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance. MenosCarica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flow... Mostrar Tudo |
Thesaurus NAL: |
Carica papaya; Defense responses; Papaya meleira virus; Transcriptome Plant'virus interaction. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02422naa a2200241 a 4500 001 1020018 005 2018-04-17 008 2018 bl uuuu u00u1 u #d 100 1 $aMADRONERO, J. 245 $aTranscriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya$h[electronic resource] 260 $c2018 520 $aCarica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance. 650 $aCarica papaya 650 $aDefense responses 650 $aPapaya meleira virus 650 $aTranscriptome Plant'virus interaction 700 1 $aRODRIGUES, S. P. 700 1 $aANTUNES, T. F. S. 700 1 $aABREU, P. M. V. 700 1 $aVENTURA, J. A. 700 1 $aFERNANDES, A. A. R. 700 1 $aFERNANDES, P. M. B. 773 $tPlant Cell Reports, p. 1-14, 2018.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Biblioteca Rui Tendinha (BRT) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
Fechar
|
Expressão de busca inválida. Verifique!!! |
|
|